

XDS Windows 2000/XP
H.100/SCSA-Based Driver

Reference Manual

October 2005

American Tel-A-Systems, Inc.

257M018H ©
Printed in U.S.A. All rights reserved.

This page was intentionally left blank.

Contents

1 ISA / PCI Driver Package Software Installation and Removal
Driver Package Contents ..1-3
ISA Hardware Overview ..1-3
PCI Hardware Overview...1-4
PCI Low-level Driver Installation...1-4
Driver Package Installation...1-9
ISA Low-level Driver Installation ..1-9
ISA and PCI Low-level Driver Removal ..1-10
Driver Package Removal ..1-10

2 Driver Package Programs and Source Code
XDS Source Code Description ...2-3
XDS Tests / Utilities...2-3
XDS Downloader Program...2-10
XDS Voice Playback Demo Programs ...2-10
XDS DLL Description..2-12
Source Code and Directory Structure ...2-13

3 XDS T1 / E1 Configuration Utility Program
Overview ..3-3
Selecting A Board To Configure ..3-3
Configuring Each Span...3-3
Configuring Span Channels..3-5
Saving And Using Configured Data ...3-7

4 XDS Windows 2000/XP PCI And ISA Driver IOCTL Description
Overview ..4-3
XDS DevIoControl Commands ..4-4
PCI Application Interface ...4-7
ISA Application Interface...4-8
DevIoControl Definition...4-9
XMT...4-10
RCV..4-11
RCV_QUERY..4-13
READ_DPRAM...4-15
WRITE_DPRAM ...4-16
XDS_RESET..4-17
XDS_GET_BUS_DEVICE_NUM...4-18
XDS_QUEUE_USER_MSG..4-19
XDS_GET_BOARD_INFO...4-20
READ_PLX_INT...4-22
VOICE_WRITE_DPRAM ...4-23
VOICE_RCV..4-24
VOICE_SET_EVENT..4-25
VOICE_UNSET_EVENT..4-26

VOICE_RESOURCE_RCV...4-27
VOICE_RESOURCE_XMT ..4-29
VOICE_RESOURCE_WRITE_DPRAM_DATA ...4-31
VOICE_RESOURCE_WRITE_DPRAM_PARAMETERS..4-32
VOICE_RESOURCE_READ_DPRAM..4-34
VOICE_RESOURCE_SET_EVENT...4-35
VOICE_RESOURCE_UNSET_EVENT ...4-36

XDS Windows 2000/XP PCI (H.100) / ISA SCSA
Driver Reference Manual

Author: Brian D. Riek
Copyright © American Tel-A-Systems, Inc.,
October 2005, All rights reserved.

This document and the information herein is proprietary to American Tel-A-Systems, Inc. It is
provided and accepted in confidence only for use in the installation, operation, repair and
maintenance of Amtelco equipment by the original owner. It also may be used for evaluation
purposes if submitted with the prospect of sale of equipment.

This document is not transferable. No part of this document may be reproduced in whole or in
part, by any means, including chemical, electronic, digital, xerographic, facsimile, recording, or
other, without the expressed written permission of American Tel-A-Systems, Inc.

The following statement is in lieu of a trademark symbol with every occurrence of trademarked
names: trademarked names are used in this document only in an editorial fashion, and to the
benefit of the trademark owner with no intention of infringement of the trademark. “SCSA” is a
registered trademark of Dialogic (Intel). “Windows 2000” and “Windows XP” are registered
trademarks of Microsoft, Inc.

American Tel-A-System, Inc.
608-838-4194

4800 Curtin Drive, McFarland, WI 53558, USA
http://www.amtelco.com/

257M018H

http://www.amtelco.com/

ISA / PCI Driver
And Package Software

Installation And Removal

 1-2

This page was intentionally left blank.

 1-3

Driver Package Contents -

The XDS Windows 2000/XP H.100 (SCSA-based) Driver package comes in the
form of a CD-ROM disc (Amtelco P/N 257CD004) or self-extracting executable -
if downloaded. This disc/image contains the device driver along with an .inf file
(which is used for the initial driver installation), a “WISE Wizard” installation
program for the driver application suite and the source code. If downloaded, the
user will need to install the driver package first, it will then copy the PCI low-level
driver (xds_2000_pci.sys) into the \Program Files\Amtelco\SCSA\ directory along
with the .inf file.

1.0 Hardware Installation

ISA -
Each XDS ISA board has two rotary switches labeled SW1 and SW2 and a set of
jumper blocks labeled JW5. SW1 is used to select which 2K `portion of memory
within the 32K segment of shared memory mapped into the PC’s address space the
XDS board will use. Each board must have a unique setting of this switch. SW2
is used to select the addresses of the I/O ports used by the boards. This switch must
be set the same for all XDS ISA boards in the system. The jumper block labeled
JW5 is used to select the hardware interrupt shared by all XDS boards. This jumper
should be set the same for all XDS ISA boards in the system. It is important that
the I/O addresses and interrupt selected not be used by any other hardware in the
computer. Collectively, the XDS ISA boards will occupy a 32K block of memory.
The starting address of this block should be chosen so that it does not conflict with
other hardware in the system, such as video boards or disk controllers. For details
on the hardware interface, consult the appropriate XDS technical manual.

 1-4

PCI -
Each XDS H.100 board uses 8K of memory and comes in the PCI form factor. The
resources for each PCI device in the system can be viewed in the system BIOS at
boot-up.

You will need to be sure that there is a PCI interrupt available for the PCI board(s)
and one ISA interrupt available for the ISA board(s).

As with all device drivers in most operating systems, the user must have
administrator privileges in order to install/remove a device driver.

You will need to power down the system that the board(s) will be installed in.
Make sure to save any work that you may have been doing. Follow the board’s
hardware manual precisely for the board installation portion. When this step is
completed, power the system back on.

2.0 PCI Driver Installation

After Windows is finished starting up, the Found New Hardware dialog box will
appear (Figure 1.0).

Figure 1.0

Now another window (Figure 1.1), the Found New Hardware Wizard, will appear
over the first one. Click on the Next > button.

 1-5

Figure 1.1

The next window is the Install Hardware Device Drivers window (Figure 1.2).
Select the Search for a suitable driver for my device (recommended) option and
click on the Next > button.

Figure 1.2

At this point of the installation, insert the driver disc into the CD-ROM drive of the
system. Now you will need to locate the driver files (Figure 1.3). Select the CD-
ROM drives option and click on the Next > button.

 1-6

Figure 1.3

The next window should look like Figure 1.4 when “xds_2000_pci.inf” is found on
the disc. Simply click on the Next > button now.

Figure 1.4

The last window to appear during the install of a new device is like the one pictured
in Figure 1.5. Now, click on the Finish button.

 1-7

Figure 1.5

That concludes the installation process of the device driver. Each additional board
will go from step 1 (Figure 1.0) immediately to the last step (Figure 1.5) and require
no further intervention.

The user may be required to restart the machine after the driver has been installed.
If Windows prompts you to do this, it will need to be done before the hardware can
be used in order to obtain the appropriate hardware resources for the board(s).

 1-8

When Windows starts up, it will assign the memory offset, IRQ, and I/O port
dynamically for each PCI board. These settings may be viewed in the Device
Manager. Once the Device Manager is open, you will notice that the each XDS
H.100 board will appear under the Computer Telephony Device class (Figure 2.0).

Figure 2.0

The parameter values will be saved in the Windows Registry and should never be
modified or removed directly by the user. These parameters are saved at:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\XDS_2000_PCI

If problems occur with the driver, they will be identified in the Event Viewer with
the Event Source “XDS_2000_PCI” and an Event Code.

 1-9

3.0 Driver Package Installation

You are now ready to install the driver package (application suite and source code).
This procedure will use a installation wizard setup created with WISE
InstallMaster, which will guide you step by step with instructions.

Click on the Start menu button, and select the Run… command. Click on
Browse… and locate your CD-ROM drive. When you locate the CD-ROM,
highlight the setup.exe file, and click the Open button. This will begin the setup
wizard.

When finished, the setup will have created a start menu item for your applications.

4.0 ISA Driver Installation

If the user plans to use XDS ISA boards in the system, they will need to install the
ISA low-level driver using the XdsInst_Isa utility. The default path for this
program is: <drive>:\Program Files\Amtelco\SCSA\Bin\Intel

The user must now set the required parameters for the ISA portion of the device
driver. These are: the RAM base address, the SW2 switch setting to select the I/O
address, and the JW5 IRQ interrupt selection jumper setting. The parameter values
will be saved in the Windows registry, and should only be modified using this
installation program.

Now click on the “Go” button. A pop-up screen will appear to report the outcome
of the device driver installation. The ID strings and offset (device number) for all
XDS boards in the system should appear in the middle list-box. If board(s) are
physically present, but not listed in the display box, there may be a problem with
the settings or the board(s).

 1-10

If problems occur during the driver installation, they will be identified in the
Windows System Log. These can be viewed by:

1) From the Windows Programs menu, open “Administrative Tools”.
2) Open the “Computer Management”
3) Select the “Event Viewer” under the “system tools”.
4) Events should appear, by default, in order from newest to oldest under
“Applications”.

Common error event codes include:
Event code of 1 indicates that messages can not be sent to a board
Event code of 2 indicates messages are not being received from a board
Event code of 3 indicates an interrupt failure

NOTICE: There is only one pre-built program that will communicate with XDS
ISA board in this driver package release. It is named Test_Isa_Drv.exe, and is
located in the ..\Bin\Intel directory. The source code will give the user an idea of
what they will need to do to modify the other programs to work with their ISA
board(s).

5.0 Driver(s) and Driver Package Removal

To ensure the proper removal of the XDS driver package, both drivers (if both were
installed), and any other components; please follow the following steps in order:

1) Close all XDS-related programs and project workspaces, if open. Save any

work necessary to your development.

2) If the ISA driver was installed on the system, remove it. The can be done by

executing “XdsInst_Isa”, then selecting the Unload and Uninstall check-
boxes. Now click on the “Go” button.

3) If the PCI driver was installed on the system, follow the steps below, starting

with step 4a.

4) Now, you may un-install the application suite and source code from the

 1-11

system. You will need to run the Add/Remove Programs utility in the
Control Panel in order to do this. The driver package will be listed as the
“XDS Win 2K/XP H.100/SCSA-based Driver Pkg”.

4a) First, remove the device driver from the system. You will need to run the
Add/Remove Hardware utility in the Control Panel (Figure 3.0) and click
Next >.

Figure 3.0

 1-12

4b) Next, select the Uninstall/Unplug a device option and click on Next > (as in
Figure 3.1).

Figure 3.1

4c) Then, select Uninstall a device and click on Next > in the next window (like
the one in Figure 3.2).

Figure 3.2

 1-13

4d) You will now need to select the Amtelco Infinity Telephony Board(s) from
the device list (as pictured in Figure 3.3) and click Next >.

Figure 3.3

4e) Select Yes, I want to uninstall this device option from the following window
(Figure 3.4) and click on Next >.

Figure 3.4

 1-14

4f) Click on Finish > button in the last window (Figure 3.5).

Figure 3.5

1) Power off you system and remove any XDS hardware installed.

2) Finished!!!

Driver Package
Programs and Source Code

 2-2

This page was intentionally left blank.

 2-3

1.0 XDS Source Code Description

All of the source code used to build the programs, DLLs, and driver has been included for the
user’s convenience. If any or all of the code is “re-used”, the American Tel-A-Systems, Inc.
copyright information must be included with it. All of the project workspaces for this release
package have a pre-processor define (“XDS_SCSA” and “XDS_2000_PCI”) in them, due to the
fact that many of the projects included may work with other XDS driver packages. Microsoft
Visual C++ 6.0 (32 bit) was used to create, compile, and build all of the applications included.
Microsoft Visual C++ 6.0 (32 bit) and the Microsoft Windows 2000 DDK were used to compile
and build the low-level drivers (xds_2000_pci.sys and xds_2000_isa.sys).

2.0 Tests / Utilities

Several XDS demonstration applications are included with this package and may be found in the
..\bin\intel\ directory. These are included to give the user an understanding of how the product
works.

All message strings sent to any board, using any one of the provided utilities, must be in
CAPITAL letters.

XdsUtil (GUI Utility)
A Graphical User Interface, XdsUtil, has been provided for simple and user-friendly
communication with XDS boards. There is a pull-down list used to select which board to
transmit messages to, and one to display the received messages from. Message strings sent are
typed in the edit box above the message receive list box. Boards that have physical interface
ports will display the port states in the port state window on the right. BRI boards will display
the Layer 1 port states in this window. The port range display may be controlled by changing the
port range spin control. Click on the right arrow to show the next block of ports, and to go back
click on the left arrow. This program uses message polling to receive messages from the driver.
A button labeled “Show Boards” is used to display a list of present boards. A modal dialog box
will appear, when finished, click on the “Done” button and you will return to the main dialog.
The “Clear Message Window” button simply clears the messages displayed in the message
receive list-box.

Like all of the XDS applications, it should be used alone and not in combination with any other
XDS programs or utilities. Opening an application while one is already running may result in
message passing problems. This demo program uses a “polling” scheme of receiving messages
from a board, and is less efficient than one of the interrupt-driven demos, such as Sig_Util.

 2-4

PCI Driver Command Line Test
The test program test_pci_drv is a simple program, written in ‘C’, that demonstrates how to
make PCI driver IOCTL calls. It is a text-based command line application that makes IOCTL
calls directly to the PCI driver. The syntax is “test_pci_drv n”, where n is the number of an
installed XDS board, or just “test_pci_drv” to display a list of XDS boards to use. The program
first displays any messages that might be already on the board’s queue(s). Then, the options: s =
send, r = receive, or q = quit, are displayed. To send a message, type in ‘s’ and then the
command string followed by pressing the “Enter” key.

To receive any messages that might be on the message or query queue, type in ‘r’ and then the
“Enter” key. The responses along with any messages on the board will be displayed on the
screen for the user. To quit the program, type in ‘q’ and then press the “Enter” key. Any
messages on the queues will be displayed and then the program will terminate.

ISA Driver Command Line Test
The test program test_isa_drv is a simple program that demonstrates how to make ISA driver
IOCTL calls. It is a text-based command line application that makes IOCTL calls directly to the
ISA driver. The syntax is “test_isa_drv n”, where n is the SW1 setting of an installed XDS
board. The program first displays any messages that might be already on the board’s queue(s).
Then, the options: s = send, r = receive, or q = quit, are displayed. To send a message, type in
‘s’ and then the command string followed by pressing the “Enter” key.

To receive any messages that might be on the message or query queue, type in ‘r’ and then the
“Enter” key. The responses along with any messages on the board will be displayed on the
screen for the user. To quit the program, type in ‘q’ and then press the “Enter” key. Any
messages on the queues will be displayed and then the program will terminate.

Signaling Mechanism Test Utilities
Several programs are available to test and illustrate how the signaling capability of the driver. It
is a more efficient method of message handling from the driver. Once the driver receives a
message from the board, it arms the signaling mechanism notifying the application of a message
to be received.

Sig_Util is a GUI based program that allows the user to communicate with any XDS board. It is
similar to XdsUtil, in the respect that it can also be used to send and receive messages from
boards. Sig_Util has one drop-down list to select the board to be used. Once that the board is
selected, you may communicate with it by typing in message strings in the in the edit box above
the message receive list box. To send it, press the “Enter” key or click on the “Send” button.

 2-5

A button, labeled “Layer 3 Msg”, is used to demonstrate the transmission of a Layer 3 message to
BRI boards. It is intended for use with BRI boards only. To exit the program, click on the “Exit”
button. This is one of the more efficient of the XDS demo programs, and is recommended to
model the users program around. It is a good example of how an application uses the XDS
Native Library function set in conjunction with the drivers’ signaling events. Using interrupts is
much more efficient than polling for messages, and the user should keep the design philosophy in
mind when writing ones own application.

Sig_Util2 is a Graphical User Interface that has been provided for multiple board communication
with that includes signaling. There is a pull-down list used to select which two boards to
transmit messages to. The user may choose any two boards at any time during run-time. Receive
messages (from the board) for the first board “Board 1” are displayed in the Board 1 receive
messages window, and receive messages (from the board) for the second board “Board 2” are
displayed in the Board 2 receive messages window. Transmit messages (to the board) for the
first board “Board 1” are entered in the Board 1 transmit message edit box, and transmit
messages (to the board) for the second board “Board 2” are entered in the Board 2 transmit
message edit box.

signal_test is a program that sends a command repeatedly to a selected board (from drop-down
list) when the “Start” button is pressed. Nothing will be displayed on the screen while messages
are being sent. When the “Stop” button is selected, the program will stop sending messages and
will count the received responses. It will then verify if the number of responses differs from the
number of messages sent is the same. The program will display the results and statistics for the
user. When finished, click on the “Exit” button to exit and close the program.

DLL Command Line Test
The test program test_dll.exe is an example of how the XDS H.100 SCSA-based Native DLL can
be linked to a program and tested. All of the functions in this program are included in the
XdsLibSc DLL. The syntax is “test_dll n”, where n is the number of an installed XDS board, or
just “test_dll” to display a list of XDS boards to use. The program will first display any
messages that might be already on the board’s queue(s). Then, the options: s = send, r = receive,
l = send_layer3_msg, or q = quit, are displayed.

To send a message, type in ‘s’ and then the command string followed by pressing the “Enter”
key. To receive any messages that might be on the message or query queue, type in ‘r’ and then
the “Enter” key. The responses along with any messages on the board will be displayed on the
screen for the user.

To send a Layer 3 test message (intended for BRI boards only), type in ‘l’ and then press the
“Enter” key. To quit the program, type in ‘q’ and then press the “Enter” key. Any messages on
the queues will be displayed and then the program terminates.

 2-6

XdsPciRes
The XdsPciRes program is a command line utility that takes no parameters and simply displays
each PCI board number, board ID code, PCI bus number, and PCI device/function (slot) number.

Xds_Board_Dump
The Xds_Board_Dump utility is a command line utility that will dump the contents of the XDS
board’s dual-ported RAM to a text file (named xdsdump.log). This will be useful in trouble-
shooting the board if there is a problem detected. The syntax is “Xds_Board_Dump n”, where
n is the number of a specific XDS board, or just “Xds_Board_Dump”, if only on XDS board is
installed.

T1E1LedDemo
The T1E1LedDemo program is a demo / utility for the user, which monitors the span status for a
given T1/E1 board. If more than one T1/E1 board is present in the system, the user will need to
select the board number of the desired board to monitor. This is done when the program is
executed by selecting from the drop-list the board number.

XDS_T1E1_Config
T1/E1 board configuration utility. Please refer to section 3, “XDS T1 / E1 Configuration Utility
Program”, for a description of this utility.

XDS_BRI_Config
When the program starts, the first window will show the board number, board ID, version string,
and number of ports each XDS BRI boards in the system. If no XDS BRI board is found in the
system, the program will exit. You may choose the board number that you want to initialize
from the combo box and click the Config button to start a configuration window.

1. Choose the protocol layer for each port.
North American (NI-1/NI-2): Layer 2, Layer3, AT&T Custom, CACH_EKTS,
DMS-100, or National ISDN.
EURO-ISDN: Layer 2, Layer 3, or Point-to-Point.

2. Choose the port type for each port.
For the S/T board: choose “TE” for terminal equipment, choose “NT” for network
terminations, and choose UNDEFINED for not used ports. For the U-Interface board: choose
“LT” for line termination ports and choose “NT” for network terminations.

3. Enter the Directory Number and SPID for each B Channel.
Each port has two (2) B channels. For the “NT” ports, you only need to enter the directory
number. For the “TE” ports, you need to enter both Directory Number and SPID number.

 2-7

4. There are three options, with check boxes. Auto TEI Assignment and TEI Check Response
format for North American (NI-1 & NI-2) and Incoming Address Checking for Euro ISDN.

5. If you want the data to automatically be set each time the system is booted, you
check the "save on board" check box.

6. If the number of ports is greater than 16 (i.e.: H.110 board), you should click the
Port 10-1F button to set the data for ports 0x10 to 0x1F.

7. After you have done all data entry, you should click OK button. The program will get all data
and send it to the board.

8. You can save all the initialization data into an ASCII file (on your PC) by clicking the Save to
File button. This file will be saved in the local directory with the extension “.cfg”. Next time,
you can retrieve the data from an existed file by clicking the button "Retrieve".
For more information about the XDS Basic Rate ISDN Board, please refer to the BRI
technical manual for the appropriate board.

MC-3 Fiber Ring Integrity Test

The test program Mc3_Fiber_Test.exe is a test utility that tests ring integrity between two H.100
or H.110 MC3 boards. It is a two-part (side) process with three steps on each chassis, that needs
some user-intervention. The program will first initialize each board by setting up the encoding
mode, clock mode, and ring mode for each.

The user will then follow these steps in order:
1) Designate which “side” chassis will be the receive and which will be the transmit.

2) On the transmit side - type in “mc3_fiber_test n”, where n is the number of an installed XDS
board, in a command prompt window.

3) Now select the ‘T’ (transmit) operating mode. This will send a pattern of “55” to the receive
chassis.

4) On the receive side - type in “mc3_fiber_test n”, where n is the number of an installed XDS
board, in a command prompt window.

5) Now select the ‘R’ (receive) operating mode. This will display the pattern received to the
user. It will then instruct the user to go back to the transmit chassis and send the next pattern.

6) On the transmit side enter a ‘Y’ if the correct pattern, “55”, was received by the receive
chassis. Now the transmit side will send a pattern of “FF” to the receive chassis.

 2-8

7) On the receive chassis, hit the ‘Enter’ key. This will display the pattern received to the user.
The pattern here should now be “FF”. It will then instruct the user to go back to the transmit
chassis and send the next pattern.

8) On the transmit side enter a ‘Y’ if the correct pattern, “FF”, was received by the receive
chassis. Now the transmit side will send a pattern of “AA” to the receive chassis.

9) On the receive chassis, hit the ‘Enter’ key. This will display the pattern received to the user.
The pattern here should now be “AA”.

If any of the patterns received in any one of the receive steps was not what it was suppose to be,
then re-check your fiber connections and try this program again. If it does not work after that,
then report this problem to an Amtelco XDS Field Engineer or Customer Service representative.

3.0 Downloader

Most of the XDS boards are equipped with flash memory, which contains the board program.
Refer to the board reference manual to check for this feature. New revisions of the program can
be downloaded to this memory using the downloader program wn386dlc. To use this program,
the driver must be started and recognize the board. The program to be downloaded is contained
in a “.hex” file. This file will include a header identifying the board type so that it can only be
loaded onto a compatible board. The syntax for the downloader is:

wn386dlc <hexfile.hex> <segment> <board number (decimal)>

where the segment specified is either a ‘C’ for the control processor or ‘D’ for the DSP
processor. For example

wn386dlc 257H001.HEX c 16

will flash the firmware file, 257H001.hex, to the control processor onto board number 16.

4.0 XDS Voice Playback Demo Programs

Several XDS voice playback demonstration applications are included with this package and may
be found in the ..\Bin\Intel\voice playback directory. Included also are some sample voice files
that are used by the demos. These are included to give the user an understanding of how the
product works.

 2-9

Not all boards support this feature, so please check your board’s reference manual to see if
this feature is on your board and that it has the correct firmware.

As of this release the only audio formats supported for playback are raw A-law, raw µµµµ-law,
raw ADPCM, and A-law & µµµµ-law in .wav format.

4.1 xds_play_digits
xds_play_digits will play three introduction voice prompts for the user and then collect DTMF
digits. When the user is done entering digits (eg: a phone number) the program will then play
corresponding voice files back for each digit collected. It demonstrates to the user how to begin
writing an application that will playback files on the XDS board that has voice playback support.
 This demo only uses XDS boards that have voice playback support. Digits will be collected as
soon as they are detected by the XDS board that has voice playback support and will continue to
be collected until the user has not pressed one in 5 seconds, or the user presses either a ‘*’ or ‘#’
digit.

4.2 xds_play_digits2
xds_play_digits2 is an interactive XDS voice playback demo. It play three introduction voice
prompts for the user and then collect DTMF digits. When the user is done entering digits (eg: a
phone number) the program will then play corresponding voice files back for each digit collected.
 It demonstrates to the user how to begin writing an application that will playback files on the
XDS board that has voice playback support and connect an XDS H.100 Station board to the XDS
board that has voice playback support via the H.100 CT bus. The Station board will monitor
audio on port 0. This demo uses an XDS board that has voice playback support and an XDS
H.100 Station board. Digits will be collected as soon as they are detected by the XDS board that
has voice playback support and will continue to be collected until the user has not pressed one in
5 seconds, or the user presses either a ‘*’ or ‘#’ digit.

4.3 xds_play_buffer
xds_play_buffer is a demonstration to the user how to play a file from memory (buffered) 3
times on the XDS board that has voice playback support. The user may stop the playback at any
time during the loop by sending a DTMF digit to the XDS board that has voice playback support.

4.4 xds_play_buffer2
xds_play_buffer2 is a demonstration to the user how to play a file from memory (buffered) 3
times on the XDS board that has voice playback support using an XDS H.100 Station to monitor
the audio. The user may stop the playback at any time during the loop by sending a DTMF digit
to the XDS board that has voice playback support.

4.5 xds_play_file_index
xds_play_file_index is a demonstration to the user how to play an indexed file list twice in a row
on the XDS T1/E1 board. The user may stop the playback at any time during the loop by sending
a DTMF digit to the XDS T1/E1 board.

 2-10

4.5 xds_play_buffer_index
xds_play_buffer_index is a demonstration to the user how to play an indexed buffer list three
times in a row on the XDS T1/E1 board. The user may stop the playback at any time during the
loop by sending a DTMF digit to the XDS T1/E1 board.

5.0 XDS Voice Resource Demo Programs

Several XDS voice resource user demonstration applications are included with this package and
may be found in the ..\Bin\Intel\voice resource directory. Included also are some sample voice
files that are used by the demos. These are included to give the user an understanding of how the
product works.

Not all boards support this feature, so please check your board’s reference manual to see if
this feature is on your board and that it has the correct firmware.

①①①① As of this release the only audio formats supported for playback are 6kHz and 8kHz
ADPCM, 8 bit A-law & µµµµ-law in .wav format, and 16 bit Linear PCM in .wav format.

②②②② As of this release the only audio formats supported for recording are 8kHz ADPCM, 8 bit
A-law & µµµµ-law in .wav format, and 16 bit Linear PCM in .wav format.

5.1 xds_vr_custom_tone
xds_vr_custom_tone is an example of how to generate a custom tone on a voice resource
channel. The program will prompt the user for the following options at runtime:

1) A voice resource channel to generate the tone on (0 – the max number of voice resource
channels available).

2) A physical port / timeslot on the board to connect the output from the voice channel to.
3) Whether or not to monitor the audio on the physical port / timeslot (only if it is an XDS

analog board).
4) The custom tone characteristics.

5.2 xds_vr_dial_dtmf
xds_vr_dial_dtmf is an example of how to dial a DTMF string on a voice resource channel. The
program will prompt the user for the following options at runtime:

1) A voice resource channel to generate the tone on (0 – the max number of voice resource
channels available).

2) A physical port / timeslot on the board to connect the output from the voice channel to.
3) Whether or not to monitor the audio on the physical port / timeslot (only if it is an XDS

analog board).
4) The DTMF string to dial.

 2-11

5.3 xds_vr_play_buffer
xds_vr_play_buffer is an example of how to playback a buffered (in user memory space) media
file on a voice resource channel. The program will prompt the user for the following options at
runtime:

1) A voice resource channel to playback on (0 – the max number of voice resource channels
available).

2) A filename of the media file to be opened by the application, buffered, and played by the
library.

3) The data format and file type of the media file.
4) A physical port / timeslot on the board to connect the output from the voice channel to.
5) Whether or not to monitor the audio on the physical port / timeslot (only if it is an XDS

analog board).
6) Whether or not to enable full duplex on the voice resource channel.
7) Whether or not to enable DTMF detection on the voice resource channel.
8) Whether or not to stop on DTMF (if DTMF detection is enabled).
9) The DTMF digit(s) to stop on (if stop on DTMF is enabled).
10) The number of times to repeat playback. Options for this are 0 – 32767 or

XDS_REPEAT_INFINITY (infinity (-1)).
11) Whether or not to increase the playback gain.
12) The playback gain (from 0 to 20 dB) to be used (if user chooses to increase the playback

gain).

5.4 xds_vr_play_buffer_index
xds_vr_play_buffer_index is an example of how to playback a buffered (in user memory space)
sample media file list on a voice resource channel. The program will prompt the user for the
following options at runtime:

1) A voice resource channel to playback on (0 – the max number of voice resource channels
available).

2) A physical port / timeslot on the board to connect the output from the voice channel to.
3) Whether or not to monitor the audio on the physical port / timeslot (only if it is an XDS

analog board).
4) Whether or not to enable full duplex on the voice resource channel.
5) Whether or not to enable DTMF detection on the voice resource channel.
6) Whether or not to stop on DTMF (if DTMF detection is enabled).
7) The DTMF digit(s) to stop on (if stop on DTMF is enabled).
8) The number of times to repeat playback. Options for this are 0 – 32767 or

XDS_REPEAT_INFINITY (infinity (-1)).
9) Whether or not to increase the playback gain.
10) The playback gain (from 0 to 20 dB) to be used (if user chooses to increase the playback

gain).

 2-12

5.5 xds_vr_play_file
xds_vr_play_file is an example of how to playback a media file on a voice resource channel.
The program will prompt the user for the following options at runtime:

1) A voice resource channel to playback on (0 – the max number of voice resource channels
available).

2) A filename of the media file to be opened and played by library.
3) The data format and file type of the media file.
4) A physical port / timeslot on the board to connect the output from the voice channel to.
5) Whether or not to monitor the audio on the physical port / timeslot (only if it is an XDS

analog board).
6) Whether or not to enable full duplex on the voice resource channel.
7) Whether or not to enable DTMF detection on the voice resource channel.
8) Whether or not to stop on DTMF (if DTMF detection is enabled).
9) The DTMF digit(s) to stop on (if stop on DTMF is enabled).

The number of times to repeat playback. Options for this are 0 – 32767 or
XDS_REPEAT_INFINITY (infinity (-1)).

10) Whether or not to increase the playback gain.
11) The playback gain (from 0 to 20 dB) to be used (if user chooses to increase the playback

gain).

5.6 xds_vr_play_file_index
xds_vr_play_file_index is an example of how to playback a sample list of media files on a voice
resource channel. The files to be played back MUST all be of the same file type and data format
while using the xds_vr_file_index_play() functions. The program will prompt the user for the
following options at runtime:

1) A voice resource channel to playback on (0 – the max number of voice resource channels
available).

2) A physical port / timeslot on the board to connect the output from the voice channel to.
3) Whether or not to monitor the audio on the physical port / timeslot (only if it is an XDS

analog board).
4) Whether or not to enable full duplex on the voice resource channel.
5) Whether or not to enable DTMF detection on the voice resource channel.
6) Whether or not to stop on DTMF (if DTMF detection is enabled).
7) The DTMF digit(s) to stop on (if stop on DTMF is enabled).

The number of times to repeat playback. Options for this are 0 – 32767 or
XDS_REPEAT_INFINITY (infinity (-1)).

8) Whether or not to increase the playback gain.
9) The playback gain (from 0 to 20 dB) to be used (if user chooses to increase the playback

gain).

 2-13

5.7 xds_vr_play_file_gain_control
xds_vr_play_file_gain_control is an example of how to playback media file on a voice resource
channel while controlling the gain during playback by using the ‘+’ (to increase the gain)
and ‘-’ (to decrease the gain) buttons of the user’s keyboard number pad. The program will
prompt the user for the following options at runtime:

1) A voice resource channel to playback on (0 – the max number of voice resource channels
available).

2) A filename of the media file to be opened and played by library.
3) The data format and file type of the media file.
4) A physical port / timeslot on the board to connect the output from the voice channel to.

Whether or not to monitor the audio on the physical port / timeslot (only if it is an XDS
analog board).

5.8 xds_vr_record_play_buffer
xds_vr_record_play_buffer is an example of how to record to a user buffer (in user memory
space) on a voice resource channel. Once the recording is terminated, the demo program will
then play back the contents of the user buffer on the same voice channel and physical port, so that
they may check the contents. The program will prompt the user for the following options at
runtime:

1) A voice resource channel to record and playback on (0 – the max number of voice
resource channels available).

2) The data format of the voice data.
3) A physical port / timeslot on the board to connect the output from the voice channel to.
4) Whether or not to monitor the audio on the physical port / timeslot (only if it is an XDS

analog board).
5) Whether or not to enable full duplex on the voice resource channel.
6) Whether or not to enable DTMF detection on the voice resource channel.
7) Whether or not to stop on DTMF (if DTMF detection is enabled).

The DTMF digit(s) to stop on (if stop on DTMF is enabled).
8) Whether or not to increase the record gain.
9) The record gain (from 0 to 20 dB) to be used (if user chooses to increase the record gain).
10) Whether or not to suppress silence during the recording.
11) Whether or not to terminate recording on silence.
12) A period of silence to terminate on (from 1 to 229 seconds), if the user chooses the

terminate on silence option.

 2-14

5.9 xds_vr_record_play_file
xds_vr_record_play_file is an example of how to record to a media file on a voice resource
channel. Once the recording is terminated, the demo program will then play back the contents of
the media file on the same voice channel and physical port, so that they may check the contents.
The program will prompt the user for the following options at runtime:

1) A voice resource channel to record and playback on (0 – the max number of voice
resource channels available).

2) A filename of the media file to be opened and played by library.
3) The data format of the voice data.
4) A physical port / timeslot on the board to connect the output from the voice channel to.
5) Whether or not to monitor the audio on the physical port / timeslot (only if it is an XDS

analog board).
6) Whether or not to enable full duplex on the voice resource channel.
7) Whether or not to enable DTMF detection on the voice resource channel.
8) Whether or not to stop on DTMF (if DTMF detection is enabled).

The DTMF digit(s) to stop on (if stop on DTMF is enabled).
9) Whether or not to increase the record gain.
10) The record gain (from 0 to 20 dB) to be used (if user chooses to increase the record gain).
11) Whether or not to suppress silence during the recording.
12) Whether or not to terminate recording on silence.
13) A period of silence to terminate on (from 1 to 229 seconds), if the user chooses the

terminate on silence option.

5.10 xds_vr_record_file_gain_control
xds_vr_record_file_gain_control is an example of how to record a media file on a voice
resource channel while controlling the gain during recording by using the ‘+’ (to increase the
gain) and ‘-’ (to decrease the gain) buttons of the user’s keyboard number pad. The program will
prompt the user for the following options at runtime:

1) A voice resource channel to record on (0 – the max number of voice resource channels
available).

2) A filename of the media file to be recorded by library.
3) The data format and file type of the media file.
4) A physical port / timeslot on the board to connect the output from the voice channel to.

Whether or not to monitor the audio on the physical port / timeslot (only if it is an XDS
analog board).

The user may stop any of the demo programs at anytime by pressing the ‘Esc’ key on the
computer’s keyboard. Playback/record may also be stopped by DTMF if the option to stop
on DTMF is enabled in that demo program.

 2-15

5.11 xds_vr_demo
xds_vr_demo is an all-in-one GUI example demonstrating many of the XDS voice resource
board functions, such as playing back and recording voice files and dialing DTMF.

1) First, select Open Voice Resource Channel from the File menu. From the drop-down list,
the user will choose which voice resource channel on which XDS Voice Resource board
they want to control.

2) Then the user will be prompted for a physical port to connect to. This is an analog port
on the XDS Voice Resource board. This demo application will connect the stream and
timeslot for a physical port for the user.

3) Once the voice resource channel has been selected and the port is connected, the user may
select an option from the Function menu. These functions are described below.

Function > Play File:
The user may choose any supported media file ① on the host PC’s hard disk drive to playback. If
it is a supported .wav file, playback will begin immediately. If it is a supported raw media file ①
(ie: 6 kHz or 8 kHz ADPCM), the user will then need to tell the application which data format to
play back the file as.

Function > Play File Index:
This option will play back a list of pre-selected voice files on the voice resource channel that the
user selected.

Function > Play Buffer:
The user may choose any supported media file ① on the host PC’s hard disk drive to playback. If
it is a supported .wav file, playback will begin immediately. If it is a supported raw media file ①
(ie: 6 kHz or 8 kHz ADPCM), the user will then need to tell the application which data format to
play back the file as. Playing from a buffer will open the voice file in user-space memory and
then play it back.

Function > Play Digits:
The user may dial a DTMF string on a voice resource channel with this function. The user will
enter the DTMF they wish to have dialed in the Select digits to be played by channel dialog
window. Valid DTMF tones are 0-9, A-D, #, and *.

Function > Stop Play:
This option will stop playback on the channel that the user selects from the dialog window.

Function > Record File:
The user may record a voice file to hard disk by selecting this option. The user will be prompted
to enter a filename (including the extension, i.e.: .wav – if a supported wave file) in the File
name: field of the Please select a filename for the recording dialog window and will be able
select the file type and data format in the Save as type: field.

 2-16

5.12 xds_vr_read_dpram
xds_vr_read_dpram is a diagnostic utility which allows the user to view all of the voice
resource DSP commands that were sent to and received from the DSP in addition to the transmit
and receive mailbox head and tail.

6.0 XDS User Library / DLL Descriptions

XdsLibSc DLL
An “XDS” DLL (XdsLibSc.dll) has been provided to access XDS native board user functions.
These include proprietary functions for use with XDS boards. Many of the applications in this
software package use this DLL. When creating a new application, be sure to link in XdsLibSc.lib
in the project workspace. Details of the functions included in this library may be found in the
document XDS SCSA Library Reference Manual, 251M024.

XdsVoiceLib DLL
An “XDS” DLL (XdsVoiceLib.dll) has been provided to access XDS voice playback user
functions. These include proprietary functions for use with XDS boards. All of the XDS voice
playback applications in this software package use this DLL. When creating a new application,
be sure to link in XdsVoiceLib.lib in the project workspace. Details of the functions included in
this library may be found in the document XDS SCSA Library Reference Manual, 251M024.

XdsVrLib DLL
An “XDS” DLL (XdsVrLib.dll) has been provided to access XDS Voice Resource user
functions. These include proprietary functions for use with XDS boards. All of the XDS Voice
Resource applications in this software package use this DLL. When creating a new application,
be sure to link in XdsVrLib.lib in the project workspace. Details of the functions included in this
library may be found in the document XDS SCSA Library Reference Manual, 251M024.

 2-17

7.0 Source Code And Directory Structure

This package contains all of the source code for the XDS device driver, DLLs, driver installation
application, and test & communication programs. The following is a description of the directory
hierarchy:

Binary file directory -
\SCSA\Bin\Intel - executables, DLLs, driver, and downloader
\SCSA\Bin\Intel\Voice Playback - voice playback executables, sample .wav files, and XDS

voice playback DLL
\SCSA\Bin\Intel\Voice Resource - voice resource executables, sample .wav files, and XDS

voice resource DLL
Source code directories -
\SCSA\Source\Downloader - wn386dlc downloader program
\SCSA\Source\Include - include (header) files
\SCSA\Source\Lib - library files for Intel x86 processors
\SCSA\Source\Mc3_Fiber_Test - MC3 fiber ring test source code
\SCSA\Source\Shared - shared source code directory
\SCSA\Source\Sig_Util - Sig_Util application source code
\SCSA\Source\Sig_Util2 - Sig_Util2 application source code
\SCSA\Source\Signal_Test - Signal_Test application source code
\SCSA\Source\Station_Config - station_config (utility) application
\SCSA\Source\Test_dll - xdslibmv.dll test
\SCSA\Source\Test_isa_drv - ISA driver test
\SCSA\Source\Test_pci_drv - PCI driver test
\SCSA\Source\Wise - Wise installation project file
\SCSA\Source\XDS_BRI_Config - xds_bri_config (utility) application
\SCSA\Source\XDS_Class_Installer - XDS WDM driver class installer
\SCSA\Source\XdsInst_Isa - xdsinst_isa ISA driver installation program
\SCSA\Source\XdsPciRes - xdspcires (utility) application source code
\SCSA\Source\XdsUtil - xdsutil (utility) application source code
\SCSA\Source\Xds_T1E1_Config - T1/E1 configuration (utility) application source code
\SCSA\Source\T1E1LedDemo - T1/E1 span-status (demo) application source code
\SCSA\Source\XdsWin2kRemove - XDS low-level PCI driver removal script
\SCSA\Source\Xds_Board_Dump - XDS diagnostic board memory dump tool

\SCSA\Source\Drivers\PciDriver - xds_2000_pci.sys low-level driver
\SCSA\Source\Drivers\IsaDriver - xds_2000_isa.sys low-level driver

\SCSA\Source\DLLs\XdsLibSc - XDS SCSA native function library
\SCSA\Source\DLLs\XdsVoiceLib - XDS voice playback library
\SCSA\Source\DLLs\XdsVrLib - XDS Voice Resource library

 2-18

\SCSA\Source\Voice Playback\Xds_Play_Buffer
- XDS voice playback demo (from memory)
\SCSA\Source\Voice Playback\Xds_Play_Buffer_Index
- XDS voice playback demo (multiple prompts indexed from memory)
\SCSA\Source\Voice Playback\Xds_Play_Buffer2
- XDS voice playback demo (from memory)
\SCSA\Source\Voice Playback\Xds_Play_Digits
- XDS interactive voice playback demo (plays A-Law / u-Law .wav files prompted by user input)
\SCSA\Source\Voice Playback\Xds_Play_Digits2
- XDS interactive voice playback demo (plays A-Law / u-Law .wav files prompted by user input)
\SCSA\Source\Voice Playback\Xds_Play_File_Index
- XDS voice playback demo (multiple prompts indexed from A-Law / u-Law .wav files)

\SCSA\Source\Voice Resource\Xds_Vr_Custom_Tone
- XDS voice resource demo (generates a custom user tone)
\SCSA\Source\Voice Resource\Xds_Vr_Demo
- XDS GUI voice resource demo (plays and records voice data and dials DTMF)
\SCSA\Source\Voice Resource\Xds_Vr_Dial_Dtmf
- XDS voice resource demo (dials a DTMF string)
\SCSA\Source\Voice Resource\Xds_Vr_Play_Buffer
- XDS voice resource demo (plays back voice data from user memory space)
\SCSA\Source\Voice Resource\Xds_Vr_Play_Buffer_Index
- XDS voice resource demo (plays back indexed voice data from user memory space)
\SCSA\Source\Voice Resource\Xds_Vr_Play_File
- XDS voice resource demo (opens and plays back voice data from a supported media file)
\SCSA\Source\Voice Resource\Xds_Vr_Play_File_Index
- XDS voice resource demo (opens and plays back indexed voice data from supported media
files)
\SCSA\Source\Voice Resource\Xds_Vr_Play_Gain_Control
- XDS voice resource demo (opens and plays back voice data from a supported media file while
user can control the playback gain)
\SCSA\Source\Voice Resource\Xds_Vr_Record_Play_Buffer
- XDS voice resource demo (records voice data to user memory space and plays it back)
\SCSA\Source\Voice Resource\Xds_Vr_Record_Play_File
- XDS voice resource demo (records voice data to a media file and plays it back)
\SCSA\Source\Voice Resource\Xds_Vr_Record_Gain_Control
- XDS voice resource demo (records voice data to a media file while user can control the record
gain)

XDS T1 / E1
Configuration Utility Program

 3-2

This page was intentionally left blank.

 3-3

Overview:

This XDS utility program allows the user to set initial configuration parameter data for
XDS T1 or E1 boards. It allows the user to configure a board, save the configuration data
used in the EEPROM on the board, and save the configuration data used into a data file
on the system’s hard disk for future use (i.e.: on other board that the user may want to
configure like the initial one). Before sending the configuration data to the board, the
user will want to be very careful to review all selections to be sure that they are correct.

Step 1 (Select the board to be configured) –

Select the board to be configured from the Board to configure drop-down list, and click
on the “Configure Board” dialog button.

Step 2 (Configuring each span) –

From the Span Configuration dialog window, select the desired choices for each span.

a) Span type
T1:
“CI” - Customer Interface
“NT” – network termination or CO interface
“Undef” - undefined for unused ports

E1:
“TE” - Terminal Equipment or user interface
“NT” - network termination or CO interface
“Undef” for undefined for unused ports.

b) Protocol layer
T1:
“AT&T Custom” – AT&T (Lucent) support
“DMS-100” - DMS-100 NI-1 support
“Layer 2” - Layer 2 support only
“Layer 3” - Layer 3 support (generic NI-1)
“NI-2” - NI-2 support
“Siemens” - Siemens CoreNet support

E1:
“Layer 2” - Layer 2 support only
“Layer 3” - Layer 3 support (generic NI-1)

 3-4

c) Framing type
T1:
“D4” – DF Superframe
“ESF” – Extended SuperFrame

E1:
“CRC4” – Frame Aligned Signaling with additional error detection
“NonCRC4” – Frame Aligned Signaling

d) Suppression
T1:
“AMI” – Alternate Mark Inversion
“B8ZS” – Bipolar with 8-Zero Substitution

E1:
“AMI” – Alternate Mark Inversion
“HDB3” – High Density Bipolar with a maximum of 3 Zeros

e) Impedance or Line build
T1 (line build out):
“0” - DSX-1 (0-133ft.)/0dB CSU
“1” - DSX-1 (133-266ft.)
“2” - DSX-1 (266-399 ft.)
“3” - DSX-1 (399 to 533 ft.)
“4” - DSX-1 (533 to 655 ft.)
“5” – (-7.5) dB CSU
“6” – (-15) dB CSU
“7” – (-22.5) dB CSU

E1 (impedance):
“B” – 75 ohm impedance
“R” – 120 ohm impedance

 3-5

f) Signaling mode
T1:
“N” - no signaling (used with NFAS)
“P” - Primary Rate ISDN
“R” - robbed-bit signaling

E1:
“C” – Channel Associated Signaling
“N” – no signaling
“P” – Primary Rate Access ISDN signaling
“S” – Signaling System 7, when the signaling channel is carried on another span
 and timeslot 16 is made available for use as an audio path
* Note that “N” and “S” are identical except for access to timeslot 16.

g) V 5.2 signaling detection (E1 boards only)
“Disable” – no V 5.2 signaling detection
“Enable” – use the V 5.2 signaling detection

Step 3 (Configuring span channels) –

Click on the “Span 0 channels” dialog button in the Set channel options list to configure
the channels on Span 0, click on the “Span 1 channels” dialog button in the Set channel
options list to configure the channels on Span 1, and so forth…

a) Line type
T1:
“E” - E&M
“G” - ground start
“L” - loop start
“N” - none

E1:
“E” - E&M
“G” - ground start
“L” - loop start
“N” - none
“Q” - Q.421 signaling

b) Direction
“O” - FXO or CO side
“S” - the FXS or CPE side

c) Address protocol
“I” – immediate start
“W” – wink start

 3-6

d) Number digits
Specifies the number of address digits to be expected on incoming calls

e) Directory number
This sets the default subscriber number on a Primary Rate ISDN/Access span. For
channels on NT ports, this is the number that will be used as the default called directory
number for calls originating on the port. For channels on ports defined as a CI/TE, this
will be the number used as the calling party number. The directory number will be the
calling number used for calls originating from the port. Subscriber numbers may be up to
15 digits in length.

Click the “OK” dialog button to save these settings and go back to the previous dialog
window (Span Configuration), or click the “Cancel” dialog button to ignore any changes,
if any were made, and go back to the previous dialog windows (Span Configuration).

 3-7

Step 4 (Saving and using configured data) –

Once the configuration data is entered in all of the appropriate fields for each span and
channel, the user may now save this data onto the board, setup the board with this
configuration, or save it as a user-legible or binary file on the local disk drive.

Sending to board:
After ALL of the board configuration data is selected in all of the dialog boxes, review
selections and click the “Send to Board” dialog button, in the Span Configuration dialog
window. This will send all of the appropriate messages to the board and in-turn setup the
board’s run-time configuration tables with the user’s entered selections.

Saving to EEPROM:
There is an EEPROM on the board, which can be used to save the configuration data in.
You can do this by clicking on the “Save to EEPROM” dialog button, in the Span
Configuration dialog window. The board will load this data from the EEPROM into the
board’s run-time configuration tables every time the board is restarted.

Saving configuration data to a file:
If there are multiple boards that will have the same configuration data, the user can save
the configuration data to a file (in a local directory, on a hard disk drive) by clicking the
“Save to File” dialog button, in the Span Configuration dialog window. This will save
all of the configuration data used to a more user-friendly readable data file versus a
binary image.

Configuring a board from a saved configuration file:
To configure a second (or other) board with data already saved (as a file), the user will
select the board number of the board to be configure then click the “Retrieve from File”
dialog button and give the correct file name.

Saving the board configuration data as a binary image:
The user may save the configuration data from a board as a binary image by clicking on
the “Save binary image” dialog button in the main program dialog window XDS T1/E1
Configuration Utility. The board must be configured already, using the “Save to File”
option in the Span Configuration dialog window.

Loading a binary image from a file in to a board:
The user may load configuration data from a binary image on the local hard drive by
clicking on the “Load binary image” dialog button in the main program dialog window
XDS T1/E1 Configuration Utility.

If you have any questions about the program, please contact Amtelco for technical
support at (608) 838-4194, ex 168, or at xdssrvc@amtelco.com.

 3-8

This page was intentionally left blank.

XDS Windows 2000/XP
PCI and ISA Driver
IOCTL Description

 4-2

This page was intentionally left blank.

 4-3

Overview

The XDS Windows 2000/XP Driver is designed to provide an interface between
XDS boards and applications running under Windows 2000/XP. It contains
facilities to send and receive messages from any XDS board. There are also
functions that allow for the direct reading and writing of the Dual-Ported Ram,
which can be used for diagnostic and software downloading purposes.

There are two interfaces used by the XDS boards. One is for the WDM plug-and-
play PCI device driver, and the other is for the ISA device driver. Control of the
boards is accomplished through command strings, which are in the form of NULL
terminated ASCII strings that are in CAPITAL letters. Responses,
acknowledgments, state changes and error information are also passed from the
XDS boards in the form of ASCII strings. Each board has a transmit and receive
mailbox and a set of corresponding flags. Each board also provides a limited
amount of buffering (eight messages deep) in either direction.

 4-4

The DevIoControl supports the following commands for all XDS boards:
XMT - transmit a standard message from an application to a

board
RCV - receive a message from a board on the response queue
RCV_QUERY - receive a message from a board on the query queue
READ_DPRAM - read from dual-ported RAM on a board
WRITE_DPRAM - write to dual-ported RAM on a board
XDS_RESET - reset specified device (ISA High Density Line Boards,

ISA BRI, all H.100, and all H.110 boards)
XDS_GET_BUS_DEVICE_NUM - obtain the PCI bus and device number for a given

XDS PCI board (PCI only)
XDS_QUEUE_USER_MSG - place a board message on the receive message

queue (PCI only)
XDS_GET_BOARD_INFO - get board ID, version, number of ports, PCI bus

and device number, board DPRAM size (in bytes),
voice resource number of channels, voice resource
module DPRAM size (in bytes), voice resource
voice buffer size

The DevIoControl supports the following commands for XDS boards that support
voice playback (please check your board for compatibility before using these
commands):
VOICE_WRITE_DPRAM - write a 1K block of data (audio) to the board’s

DPRAM
VOICE_RCV - XDS voice message receive message function
VOICE_SET_EVENT - enable signaling for voice playback messages
VOICE_UNSET_EVENT - disable signaling for voice playback messages

 4-5

The DevIoControl supports the following commands for XDS boards that have a
voice resource module (please check your board for compatibility before using
these commands):
VOICE_RESOURCE_READ_DPRAM
- read data from the voice resource module’s DPRAM
VOICE_RESOURCE_WRITE_DPRAM_PARAMETERS
- write parameter data to the voice resource module’s DPRAM
VOICE_RESOURCE_WRITE_DPRAM_DATA
- write general data to the voice resource module’s DPRAM
VOICE_RESOURCE_XMT
- send a command from the application to the voice resource module
VOICE_RESOURCE_RCV
- receive driver-to-application voice resource information messages
VOICE_RESOURCE_SET_EVENT
- enable signaling for voice resource driver-to-application information messages
VOICE_RESOURCE_UNSET_EVENT
- disable signaling for voice resource driver-to-application information messages

 4-6

For the purposes of these commands, the board is specified by board_number.

For ISA boards, this number corresponds to the SW1 switch setting of the board.
These numbers will range from 0-15.

For PCI/H.100 boards, this number will correspond to the PCI device number.
These numbers will range from 16-31.

The transmit command writes messages directly to the mailbox of the appropriate
board. The driver places received messages on one of two commonly used queues.
Acknowledgments, state change messages, error messages, etc… are passed
through the receive queue. Query responses and version request responses are
passed through a separate receive query queue. This queue is designed to help
efficient programming by putting ‘query’ messages on a separate queue to cut down
on access time by the application. Users will likely only access this queue when
they expect a diagnostic message response from a message that they had sent. These
messages may take a longer amount of time to generate a response, so therefore are
on a separate queue. There are additional board-specific message queues for voice
playback and voice resource messages respectively.

Each queue is shared by all of the XDS boards in the system. A driver command is
provided for reading each queue. The receive queue can handle up to 31 messages
while the query queue can handle 7. The voice playback and voice resource queues
can both handle 127 messages. If the queue is full, the driver will discard
additional messages. It is therefore the responsibility of the application to check the
queues frequently enough so that they do not fill up.

The driver can be set to notify the application when a new message has arrived
from an XDS board using the signaling mechanism. This facility eliminates the
need for an application to continuously poll the driver.

Commands are provided for reading and writing the dual-ported RAM, which each
board shares with the host processor. These commands include protection to
prevent reading or writing outside of the dual ported memory on a particular board
or for overwriting the mailboxes or configuration information on each board.

 4-7

PCI Application Interface

Applications can interface directly to the driver by using the Windows 2000/XP
system calls GetDeviceViaInterface, CloseHandle, and DevIoControl. Through the
DevIoControl function, the application can send and receive messages directly to
and from XDS boards. It is also possible to directly read or write to the Dual-
Ported Ram on the XDS boards. OpenEventHandle is used to obtain an event
handle for the signaling mechanism.

GetDeviceViaInterface
Before an application can access the DevIoControl function, a connection to the
driver must be established and a file handle must be obtained. This function opens
up a connection to the device driver. All event queues will be initialized whenever
a connection with the XDS driver is opened.

GetDeviceViaInterface((LPGUID)&XDS_IO_GUID, 0);

The XDS_IO_GUID symbol refers to the Amtelco XDS Computer Telephony
Class (16F4A638-1B29-435B-85A1-0077D14CD8B2).

CloseHandle
This function will close an open object handle returned by the
GetDeviceViaInterface function.

BOOL CloseHandle(HANDLE hobject);

 4-8

ISA Application Interface

Applications can interface directly to the driver by using the CreateFile,
CloseHandle, and DevIoControl function calls. Through the DevIoControl
function, the application can send and receive messages directly to and from XDS
boards. It is also possible to directly read or write to the Dual-Ported Ram on the
XDS boards. OpenEventHandle is used to obtain an event handle for the signalling
mechanism.

CreateFile
Before an application can access the DevIoControl function, a connection to the
driver must be established and a file handle must be obtained. This function opens
up a connection to the device driver. It returns a handle that is used to send requests
to the device driver. All event queues will be initialized whenever a connection
with the XDS driver is opened.

HANDLE CreateFile(LPCTSTR lpFileName,
DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDistribution,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile);

The XDS ISA device driver file name uses the symbolic link notation of
“\\\\.\\XDS_2000_ISA”.

CloseHandle
This function will close an open object handle returned by the CreateFile function.

BOOL CloseHandle(HANDLE hobject);

 4-9

DevIoControl

The DevIoControl call takes the form:
BOOL DeviceIoControl (
Handle hDevice, (handle to device)
DWORD dwIoControlCode, (operation / command)
LPVOID lpInBuffer, (input data buffer)
DWORD nInBufferSize, (size of input data buffer)
LPVOID lpOutBuffer, (output data buffer)
DWORD nOutBufferSize, (size of output data buffer)
LPDWORD lpBytesReturned, (byte count)
LPOVERLAPPED lpOverlapped); (overlapped information)

It sends the requested command code directly to the specified device driver. The
driver will perform the operation and return a status flag indicating if the command
was completed correctly.

All requests to the XDS device driver are made by calling this function. Each type
of request may require different input and output structures, which are detailed in
the following pages.

OpenEventHandle
This function is used to obtain the event handle for the signaling mechanism. The
application makes a call to the function

OpenEventHandle(HANDLE, *hOut)

If this function succeeds, the event handle is stored in hOut and the function returns
a 1. Otherwise, the event handle is null and the function returns a 0.
The application can then use the Win32 WaitForSingleObject call to wait on the
event handle for incoming messages.

 4-10

XMT

BOOL DevIoControl(
hdriver, XDS device driver handle
(DWORD)XMT, IOCTL low-level driver command
&msg, pointer to XDS_MSG data structure
sizeof(XDS_MSG), size of XDS_MSG data structure
NULL, (not used)
0, (not used)
&data_length, pointer to number of bytes returned
NULL); (not used)

XDS_MSG msg;
typedef struct{
UCHAR board_number; the board number
char msg[32]; the ASCII text of message, NULL terminated
USHORT augTxRxLen; length of Layer 3 message
UCHAR augTxRxMesg[260]; body of Layer 3 message
}XDS_MSG *PXDS_MSG;

Purpose
This command is used to send messages to an XDS board. The board is specified in
board_number in the structure msg which corresponds to the board number. The message is
contained in the character array msg, and consists of a NULL terminated character string.

Returns
The command will return the following codes:

STATUS_SUCCESS success
STATUS_DATA_ERROR timeout or other problem with the board
STATUS_BUFFER_TOO_SMALL insufficient memory allocated in call

Comments
Transmit messages are not queued, but sent directly to the board. If the mailbox is full,
XDS_XMT will wait up to a tenth of a second before reporting a failure. Note that
augTxRxLen and augTxRxMesg are only valid when sending a Layer 3 message to an XDS
Basic Rate ISDN Board when the message in msg is of the format “LC” or “LR”.

 4-11

RCV

BOOL DevIoControl(
hdriver, XDS device driver handle
(DWORD)RCV, low-level driver command
NULL, (not used)
0, (not used)
&msg, pointer to XDS_MSG data structure
sizeof(XDS_MSG), size of XDS_MSG data structure
&data_length, pointer to number of bytes returned
NULL); (not used)

XDS_MSG msg;

typedef struct{
UCHAR board_number; the board number
char msg[32]; the ASCII text of message, NULL terminated
USHORT augTxRxLen; length of Layer 3 message
UCHAR augTxRxMesg[260]; body of Layer 3 message
}XDS_MSG *PXDS_MSG;

Purpose
This command is used to receive normal messages from XDS boards.

Returns
The command will return the following codes:

STATUS_SUCCESS success
STATUS_DATA_ERROR no message available
STATUS_BUFFER_TOO_SMALL insufficient memory allocated in call

 4-12

Comments
This command checks to see if there is any message on the receive queue. If there is, it will
return with the message. If no message is present, it will return immediately with a return value
of STATUS_DATA_ERROR.

The board sending the message is contained in board_number, while the text of the message is in
the character array msg[] in the form of a NULL terminated ASCII string.

Normal messages are placed on the receive queue. These include acknowledgments, state change
messages, and error messages. Version request and query responses are placed on the query
response queue and can be read using the RCV_QUERY command.

The elements augTxRxLen and augTxRxMesg are only valid when receiving Layer 3 messages
on the XDS Basic Rate ISDN Boards and T1/E1 boards and the message in msg is of the form
“LC” or “LR”. If the queue becomes full, a “FULL QUEUE” message is placed on the queue
with the board_number for that message set to 0xFF. If this message is received, it indicates the
possibility that messages may have been lost. It is the responsibility of the application to check
for messages often enough to prevent this.

 4-13

RCV_QUERY

BOOL DevIoControl(
hdriver, XDS device driver handle
(DWORD)RCV_QUERY, low-level driver command
NULL, (not used)
0, (not used)
&msg, pointer to XDS_MSG data structure
sizeof(XDS_MSG), size of XDS_MSG data structure
&data_length, pointer to number of bytes returned
NULL); (not used)

XDS_MSG msg;

typedef struct{
UCHAR board_number; the board number
char msg[32]; the ASCII text of message, NULL terminated
USHORT augTxRxLen; length of Layer 3 message
UCHAR augTxRxMesg[260]; body of Layer 3 message
}XDS_MSG *PXDS_MSG;

Purpose
This command is used to receive version request responses and query responses, which are
placed on the query response queue by the driver.

Returns
The command will return the following codes:

STATUS_SUCCESS success
STATUS_DATA_ERROR no message available
STATUS_BUFFER_TOO_SMALL insufficient memory allocated in call

 4-14

Comments
Unlike the RCV command, the RCV_QUERY command does not return immediately if there is
no message available. It will wait up to a half of a second for a message to be placed on the
queue. This implementation was made because of the finite time that it takes a board to respond
to a version request or a query. By doing so, it eliminates the need for the application to
implement a timeout mechanism.

The board sending the message is contained in board_number, while the text of the message is in
the character array msg as a NULL terminated ASCII string.

Version response messages always begin with the letter ‘V’ and query responses always begin
with the letter ‘Q’ or have ‘Q’ as the second letter and do not have a first letter of ‘S’ or ‘E’.
These messages are always placed on the query response queue and must be read using the
RCV_QUERY command.

The elements augTxRxLen and augTxRxMesg never contain valid data when using
RCV_QUERY.

If the queue becomes full, a “FULL QUEUE” message is placed on the queue with the
board_number for that message set to 0xFF. If this message is received, it indicates the
possibility that messages may have been lost. It is the responsibility of the application to check
for messages often enough to prevent this.

 4-15

READ_DPRAM

BOOL DevIoControl(
hdriver, XDS device driver handle
(DWORD)READ_DPRAM, low-level driver command
&ram_info, pointer to XDS_DPRAM data structure
sizeof(XDS_DPRAM), size of XDS_DPRAM data structure
NULL, (not used)
0, (not used)
&data_length, pointer to number of bytes returned
NULL); (not used)

XDS_DPRAM ram_info;

typedef struct {
UCHAR board_number; the board number
ULONG offset; the offset in bytes into dual-ported RAM
ULONG size; the number of bytes to be read
UCHAR *buffer; pointer to the buffer to receive the bytes read
} XDS_DPRAM, *PXDS_DPRAM

Purpose
This command can be used to read directly the contents of a portion of the dual-ported RAM.
This may be done to obtain configuration information or for diagnostic purposes. The
information read is placed in a buffer supplied by the application.

Returns
The command will return the following codes:

STATUS_SUCCESS success
STATUS_DATA_ERROR attempt to read outside the on board RAM
STATUS_BUFFER_TOO_SMALL insufficient memory allocated in call

Comments
This command may be used to obtain configuration information on the board, such as the board
type, port states, etc. However, there also exist library functions that will accomplish the same
results which may be easier to use. It is also possible to use this command for diagnostic
purposes to display the contents of the mailboxes and the state of the transmit and receive flags.

 4-16

WRITE_DPRAM

BOOL DevIoControl(
hdriver, XDS device driver handle
(DWORD)WRITE_DPRAM, low-level driver command
&ram_info, pointer to XDS_DPRAM data structure
sizeof(XDS_DPRAM), size of XDS_DPRAM data structure
NULL, (not used)
0, (not used)
&data_length, pointer to number of bytes returned
NULL); (not used)

XDS_DPRAM ram_info;

typedef struct {
UCHAR board_number; the board number
ULONG offset; the offset in bytes into dual-ported RAM
ULONG size; the number of bytes to be read
UCHAR *buffer; pointer to a buffer with data to be written
} XDS_DPRAM, *PXDS_DPRAM

Purpose
This command is used to write information into the dual-ported RAM on the XDS board
specified in board_number. This is normally not necessary as the XMT command can be used to
control the board. However, for diagnostic purposes, or for downloading firmware, this
command may be used.

Returns
The command will return the following codes:

STATUS_SUCCESS success
STATUS_DATA_ERROR attempt to write to protected RAM or outside of on board

RAM
STATUS_BUFFER_TOO_SMALL insufficient memory allocated in call

Comments
This command is included in the driver to facilitate writing a firmware downloader. It normally
will not be necessary for an application to use this command. It prevents writing to the first 256
bytes of the dual-ported RAM on ISA boards and the last 256 bytes on PCI boards. This area
contains the mailboxes, flags, and configuration information for the board.

 4-17

XDS_RESET

BOOL DevIoControl(
hdriver, XDS device driver handle
(DWORD)XDS_RESET, low-level driver command
&msg, pointer to XDS_MSG data structure
sizeof(XDS_MSG), size of XDS_MSG data structure
NULL, (not used)
0, (not used)
&data_length, pointer to number of bytes returned
NULL); (not used)

XDS_MSG msg;

typedef struct{
UCHAR board_number; the board number
char msg[32]; the ASCII text of message, NULL terminated
USHORT augTxRxLen; length of Layer 3 message
UCHAR augTxRxMesg[260]; body of Layer 3 message
}XDS_MSG *PXDS_MSG;

Purpose
This command is used to reset an entire board.

Returns
The command will return the following codes:

STATUS_SUCCESS success
XDS_ERR_IOCTL_RESET error resting board, board may not be functioning properly

Comments
This function does not replace the xds_reset_all() function in the XDS library. This will reset the
entire board. It is valid for the ISA High Density Boards, all ISA BRI boards, all PCI/H.100
boards, and all of the cPCI/H.110 boards.

 4-18

XDS_GET_BUS_DEVICE_NUM

BOOL DevIoControl(
hdriver, XDS device driver handle
(DWORD) XDS_GET_BUS_DEVICE_NUM, IOCTL low-level driver command
&info, pointer to XDS_ID data structure (input)
sizeof(XDSID), size of XDS_ID data structure
&info, pointer to XDS_ID data structure (output)
sizeof(XDSID), size of XDS_ID data structure
&data_length, pointer to number of bytes returned
NULL); (not used)

XDSID info;

typedef struct xdsid
{
char board_number; the board number
char id[5]; a character array containing the board ID string
char version[5]; a character array containing the firmware version

number
int number_ports; the number of ports on the board
unsigned char pci_bus_number; board's PCI bus number
unsigned char pci_device_number; board's PCI device number
unsigned long board_memory_size; XDS board DPRAM size
unsigned long vr_board_memory_size; XDS Voice Resource board Blackfin DPRAM size

(voice resource boards only)
unsigned char vr_board_number_channels; number of voice channels available (voice resource

boards only)
unsigned long vr_board_voice_buffer_size; size of voice buffers (voice resource boards only)
}XDSID, *PXDSID

Purpose
This command is used to obtain the PCI bus and slot number of a specified board.

Returns
The command will return the following codes:
STATUS_SUCCESS success
XDS_ERR_GET_BUS_DEVICE_NUM error obtaining the PCI slot and bus number

Comments
This function is for PCI H.100 boards only. Although XDS_ID can provide this information, this
command is left in for backwards compatibility.

 4-19

XDS_QUEUE_USER_MSG

BOOL DevIoControl(
hdriver, XDS device driver handle
(DWORD)XDS_QUEUE_USER_MSG, IOCTL low-level driver command
&msg, pointer to XDS_MSG data structure
sizeof(XDS_MSG), length of message
NULL, (not used)
0, (not used)
&data_length, pointer to number of bytes returned
NULL); (not used)

XDS_MSG msg;
typedef struct{
UCHAR board_number; the board number
char msg[32]; the ASCII text of message, NULL terminated
USHORT augTxRxLen; length of Layer 3 message
UCHAR augTxRxMesg[260]; body of Layer 3 message
}XDS_MSG *PXDS_MSG;

Purpose
This command is used to send messages to the board’s receive message queue. The board is
specified in board_number in the structure msg which corresponds to the board number. The
message is contained in the character array msg, and consists of a NULL terminated character
string.

Returns
The command will return the following codes:

STATUS_SUCCESS success
STATUS_DATA_ERROR timeout or other problem with the board
STATUS_BUFFER_TOO_SMALL insufficient memory allocated in call

Comments
Several library functions use this call when a port may be on hold and an “SBxx” message needs
to be returned to the user in the message receive queue. This is also available to be used by the
user.

 4-20

XDS_GET_BOARD_INFO

BOOL DevIoControl(
hdriver, XDS device driver handle
(DWORD) XDS_GET_BOARD_INFO, IOCTL low-level driver command
&info, pointer to XDS_ID data structure (input)
sizeof(XDSID), size of XDS_ID data structure
&info, pointer to XDS_ID data structure (output)
sizeof(XDSID), size of XDS_ID data structure
&data_length, pointer to number of bytes returned
NULL); (not used)

XDSID info;

typedef struct xdsid
{
char board_number; the board number
char id[5]; a character array containing the board ID string
char version[5]; a character array containing the firmware version

number
int number_ports; the number of ports on the board
unsigned char pci_bus_number; board's PCI bus number
unsigned char pci_device_number; board's PCI device number
unsigned long board_memory_size; XDS board DPRAM size
unsigned long vr_board_memory_size; XDS Voice Resource board Blackfin DPRAM size

(voice resource boards only)
unsigned char vr_board_number_channels; number of voice channels available (voice resource

boards only)
unsigned long vr_board_voice_buffer_size; size of voice buffers (voice resource boards only)
}XDSID, *PXDSID

Purpose
This command is used to obtain the ID, firmware version, number of physical/virtual ports, the
PCI bus and device number, size of DPRAM, size of voice resource DPRAM (if available),
number of voice resource channels (if available), and the size of voice resource buffers (if
available) of a specified board.

 4-21

Returns
The command will return the following codes:

STATUS_SUCCESS success
STATUS_BUFFER_TOO_SMALL size of data structure passed in is incorrect
STATUS_DATA_ERROR board number used, not valid

Comments
This function returns the board ID, version, and number of physical/virtual ports, PCI bus and
device number, board DPRAM size, number of voice resource channels (if available), voice
resource module DPRAM size (if available), and voice resource voice buffer (if available) size.

 4-22

READ_PLX_INT

BOOL DevIoControl(
hdriver, XDS device driver handle
(DWORD) READ_PLX_INT, IOCTL low-level driver command
&int_info, pointer to XDSINTCSR data structure (input)
sizeof(XDSINTCSR), size of XDSINTCSR data structure
&int_info, pointer to XDSINTCSR data structure (output)
sizeof(XDSINTCSR), size of XDSINTCSR data structure
&data_length, pointer to number of bytes returned
NULL); (not used)

XDSINTCSR int_info;

typedef struct xdsintcsr
{
char plx_9030; PLX 9030 or PLX 9080/9054 chip
char board_number; the board number
long interrupt_enable; interrupt enable register value
} XDSINTCSR, *PXDSINTCSR

Purpose
This command is used to query the PLX’s interrupt enable register value of a specified board.

Returns
The command will return the following codes:

STATUS_SUCCESS success
STATUS_BUFFER_TOO_SMALL size of data structure passed in is incorrect
STATUS_DATA_ERROR board number used, not valid

Comments
This is useful in a diagnostic environment.

 4-23

VOICE_WRITE_DPRAM

BOOL DevIoControl(
hdriver, XDS device driver handle
(DWORD)VOICE_WRITE_DPRAM, IOCTL low-level driver command
&data, pointer to XDS_DPRAM data structure
sizeof(XDS_DPRAM), size of XDS_DPRAM data structure
NULL, (not used)
0, (not used)
&data_length, pointer to number of bytes returned
NULL); (not used)

XDS_BOARD_RAM data;

typedef struct xds_dpram{
UCHAR board_number; the board number
ULONG offset; the offset in bytes into dual-ported RAM
ULONG size; the number of bytes to be written
UCHAR *buffer; pointer to the bytes to be written
} XDS_DPRAM *PXDS_DPRAM

Purpose
This command is used to 1K blocks of data (audio) into the dual-ported RAM on the XDS voice
playback board specified in board_number. It will write the data (audio) beginning at an offset of
0 each time.

Returns
The command will return the following codes:

STATUS_SUCCESS success
STATUS_BUFFER_TOO_SMALL size of data structure passed in is incorrect
STATUS_DATA_ERROR board number used, not valid

Comments
This call is used to implement the audio playback feature of XDS boards that have voice
playback firmware loaded. Please check your board manual to see if this feature is available.

 4-24

VOICE_RCV

BOOL DevIoControl(
hdriver, XDS device driver handle
(DWORD)VOICE_RCV, IOCTL low-level driver command
NULL, (not used)
0, (not used)
&msg, pointer to XDS_MSG data structure
sizeof(XDS_MSG), size of XDS_MSG data structure
&data_length, pointer to number of bytes returned
NULL); (not used)

XDS_MSG msg;

typedef struct{
UCHAR board_number; the board number
char msg[32]; the ASCII text of message, NULL terminated
USHORT augTxRxLen; length of Layer 3 message
UCHAR augTxRxMesg[260]; body of Layer 3 message
}XDS_MSG *PXDS_MSG;

Purpose
This command is used to receive voice playback messages from XDS boards that support voice
playback.

Returns
The command will return the following codes:

STATUS_SUCCESS success
STATUS_BUFFER_TOO_SMALL size of data structure passed in is incorrect
STATUS_DATA_ERROR no messages on voice playback message queue

Comments
This command checks to see if there is any message on the voice playback message queue. Most
of these messages will be “PT” and “PV” message responses. If the queue becomes full, a
“FULL QUEUE” message is placed on the queue with the board_number for that message set to
255. If this message is received it indicates the possibility that messages may have been lost. It
is the responsibility of the application to check for messages often enough to prevent this.

Query version request messages, and normal XDS messages are returned on the message
response and query response queues and read with the RCV and RCV_QUERY commands.

 4-25

VOICE_SET_EVENT

BOOL DevIoControl(
hdriver, XDS device driver handle
(DWORD)VOICE_SET_EVENT, IOCTL low-level driver command
&event_handle, pointer to an event HANDLE
sizeof(HANDLE *), size of the event HANDLE
NULL, (not used)
0, (not used)
&data_length, pointer to number of bytes returned
NULL); (not used)

HANDLE event_handle;

Purpose
This command is used to enable the signaling mechanism in the driver for voice playback boards.
When enabled, the driver will notify the calling function or application when a voice playback
message arrives from an XDS board.

Returns
The command will return the following codes:

STATUS_SUCCESS success
STATUS_BUFFER_TOO_SMALL size of data structure passed in is incorrect
STATUS_UNSUCCESSFUL could not initialize event mechanism in driver

Comments
To use the signaling mechanism, the application should create a user event handle and pass that
handle value to the device driver using this IOCTL call. The application should then use some
sort of wait mechanism, such as WaitForSingleObject() to monitor the receive thread for these
events.

 4-26

VOICE_UNSET_EVENT

BOOL DevIoControl(
hdriver, XDS device driver handle
(DWORD)VOICE_UNSET_EVENT, IOCTL low-level driver command
&event_handle, pointer to an event HANDLE
sizeof(HANDLE *), size of the event HANDLE
NULL, (not used)
0, (not used)
&data_length, pointer to number of bytes returned
NULL); (not used)

HANDLE event_handle;

Purpose
This command is used to disable signaling. The driver will no longer notify the calling function
or application when a voice playback message is received from an XDS voice playback board.

Returns
The command will not return a value from the driver.

Comments
This command is used to disable the signaling feature of the driver for voice playback messages.
Signaling may be re-enabled by issuing a VOICE_SET_EVENT command. This command
should be issued before the driver is closed.

 4-27

VOICE_RESOURCE_RCV

BOOL DevIoControl(
hdriver, XDS device driver handle
(DWORD)VOICE_RESOURCE_RCV, IOCTL low-level driver command
NULL, (not used)
0, (not used)
&vrData, pointer to VOICE_RESOURCE_RCV_DATA data

structure
sizeof(VOICE_RESOURCE_RCV_DATA), size of VOICE_RESOURCE_RCV_DATA data

structure
&data_length, pointer to number of bytes returned
NULL); (not used)

VOICE_RESOURCE_RCV_DATA vrData;

typedef struct voice_resource_rcv_data
{
unsigned char board_number; board number of an XDS voice resource board
unsigned char port_number; voice resource channel
unsigned long data_length1; size of data (in bytes) in user voice data buffer 1 (for

the record size)
char msg[4]; a char array used to pass messages from the driver

to the application library (not to and from the board
itself)

}VOICE_RESOURCE_RCV_DATA, *PVOICE_RESOURCE_RCV_DATA;

Purpose
This command is used to receive driver-to-library application informational messages dealing
with a voice resource board.

 4-28

Returns
The command will return the following codes:

STATUS_SUCCESS success
STATUS_BUFFER_TOO_SMALL size of data structure passed in is incorrect
STATUS_DATA_ERROR no messages on voice resource message queue

Comments

This command checks to see if there is any message on the voice resource driver-to-application
information message queue. Messages returned from this command are used to tell the
application information about the progress of voice playback or voice record on a voice resource
board where an action is required by the application. An example would be a “P0” message to
the application. This is a request from the driver for more data to be put (by the application) in
the user buffer 1 for a specified voice resource channel. “P1” would be a request for more data in
buffer 2 for a specified voice resource channel. A list of these messages is contained in the Voice
Resource Functions chapter of the XDS Native Command Set Function Library
For SCSA & H.100 Boards user manual (Amtelco P/N 251M024).

 4-29

VOICE_RESOURCE_XMT

BOOL DevIoControl(
hdriver, XDS device driver handle
(DWORD)VOICE_RESOURCE_XMT, IOCTL low-level driver command
&vrData, pointer to VOICE_RESOURCE_DATA data

structure
sizeof(VOICE_RESOURCE_DATA), size of VOICE_RESOURCE_DATA data structure
NULL, (not used)
0, (not used)
&data_length, pointer to number of bytes returned
NULL); (not used)

VOICE_RESOURCE_DATA vrData;

typedef struct voice_resource_data
{
unsigned char board_number; board number of an XDS voice resource board
unsigned char port_number; voice resource channel
unsigned char Msg[4]; a message array used to pass messages between the

driver and application (not to and from the board
itself)

void *pBuffer; pointer to a buffer with data passed to the driver
unsigned long board_comd; voice resource board DSP command
unsigned long data_length1; size of data (in bytes) in user voice data buffer 1
unsigned long data_length2; size of data (in bytes) in user voice data buffer 2
unsigned long buffer_length; half the size of the user buffer (in bytes)
unsigned char num_buffer; the number of the buffer to use in IOCTL call
}VOICE_RESOURCE_DATA, *PVOICE_RESOURCE_DATA;

Purpose
This command is used to send a voice resource DSP command to a voice resource board.

 4-30

Returns
The command will return the following codes:

STATUS_SUCCESS success
STATUS_BUFFER_TOO_SMALL size of data structure passed in is incorrect
STATUS_DATA_ERROR board not available
STATUS_NOT_IMPLEMENTED an invalid XMT command was attempted to be sent

Comments

This IOCTL command is used to send DSP commands directly to the voice resource module
DSP.

A list of applicable commands and examples are listed in the Voice Resource Board chapter of
the driver reference manual.

 4-31

VOICE_RESOURCE_WRITE_DPRAM_DATA

BOOL DevIoControl(
hdriver, XDS device driver handle
(DWORD) VOICE_RESOURCE_WRITE_DPRAM_DATA, low-level driver command
&ram_info, pointer to XDS_DPRAM data structure
sizeof(XDS_DPRAM), size of XDS_DPRAM data structure
NULL, (not used)
0, (not used)
&data_length, pointer to number of bytes returned
NULL); (not used)

XDS_DPRAM ram_info;

typedef struct {
UCHAR board_number; the board number
ULONG offset; the offset in bytes into dual-ported RAM
ULONG size; the number of bytes to be read
UCHAR *buffer; pointer to a buffer with data to be written
} XDS_DPRAM, *PXDS_DPRAM

Purpose
This command is used to write information into the dual-ported RAM on the voice resource
module of the XDS board specified in board_number.

Returns
The command will return the following codes:

STATUS_SUCCESS success
STATUS_DATA_ERROR attempt to write to protected RAM or outside of on board

RAM
STATUS_BUFFER_TOO_SMALL insufficient memory allocated in call

Comments
This command is included in the driver to facilitate writing things such as a dial string to play on
a voice resource channel. The driver will prevent writing to the last 16 bytes of the dual-ported
RAM on the voice resource module. This area contains receive and transmit command queues.

 4-32

VOICE_RESOURCE_WRITE_DPRAM_PARAMETERS

BOOL DevIoControl(
hdriver, XDS device driver handle
(DWORD) VOICE_RESOURCE_WRITE_DPRAM_PARAMETERS, low-level driver command
&pVparms, pointer to VOICE_RESOURCE_PARAMETERS data

structure
sizeof(XDS_DPRAM), size of VOICE_RESOURCE_PARAMETERS data

structure
NULL, (not used)
0, (not used)
&data_length, pointer to number of bytes returned
NULL); (not used)

VOICE_RESOURCE_PARAMETERS pVparms;

typedef struct voice_resource_parameters
{
UCHAR board_number; the board number
ULONG offset; the offset in bytes into dual-ported RAM
void *buffer; pointer to a buffer with data to be written
unsigned char num_bytes; the size (in bytes) of the data to be written
}VOICE_RESOURCE_PARAMETERS, *PVOICE_RESOURCE_PARAMETERS;

Purpose
This command is used to write parameter information into the dual-ported RAM on the voice
resource module of the XDS board specified in board_number.

 4-33

Returns
The command will return the following codes:

STATUS_SUCCESS success
STATUS_DATA_ERROR attempt to write to protected RAM or outside of on board

RAM
STATUS_BUFFER_TOO_SMALL insufficient memory allocated in call

Comments
This command is included in the driver to write 8 bit or 16 bit (num_bytes is either 1 for 8 bit or
2 for 16 bit) values to the voice resource module. The driver will prevent writing to the last 16
bytes of the dual-ported RAM on the voice resource module. This area contains receive and
transmit command queues.

 4-34

VOICE_RESOURCE_READ_DPRAM

BOOL DevIoControl(
hdriver, XDS device driver handle
(DWORD)VOICE_RESOURCE_READ_DPRAM, low-level driver command
&ram_info, pointer to XDS_DPRAM data structure
sizeof(XDS_DPRAM), size of XDS_DPRAM data structure
NULL, (not used)
0, (not used)
&data_length, pointer to number of bytes returned
NULL); (not used)

XDS_DPRAM ram_info;

typedef struct {
UCHAR board_number; the board number
ULONG offset; the offset in bytes into dual-ported RAM
ULONG size; the number of bytes to be read
UCHAR *buffer; pointer to the buffer to receive the bytes read
} XDS_DPRAM, *PXDS_DPRAM

Purpose
This command can be used to read directly the contents of a portion of the dual-ported RAM.
This may be done to obtain configuration information or for diagnostic purposes. The
information read is placed in a buffer supplied by the application.

Returns
The command will return the following codes:

STATUS_SUCCESS success
STATUS_DATA_ERROR attempt to read outside the on board RAM
STATUS_BUFFER_TOO_SMALL insufficient memory allocated in call

Comments
This command may be used to obtain information on the voice resource DSP, such as
configuration data.

 4-35

VOICE_RESOURCE_SET_EVENT

BOOL DevIoControl(
hdriver, XDS device driver handle
(DWORD)VOICE_RESOURCE_SET_EVENT, IOCTL low-level driver command
&event_handle, pointer to an event HANDLE
sizeof(HANDLE *), size of the event HANDLE
NULL, (not used)
0, (not used)
&data_length, pointer to number of bytes returned
NULL); (not used)

HANDLE event_handle;

Purpose
This command is used to enable the signaling mechanism in the driver for voice resource boards.
When enabled, the driver will notify the calling function or application when the driver has a
driver-to-application information message for the application.

Returns
The command will return the following codes:

STATUS_SUCCESS success
STATUS_BUFFER_TOO_SMALL size of data structure passed in is incorrect
STATUS_UNSUCCESSFUL could not initialize event mechanism in driver

Comments
To use the signaling mechanism, the application should create a user event handle and pass that
handle value to the device driver using this IOCTL call. The application should then use some
sort of wait mechanism, such as WaitForSingleObject() to monitor the receive thread for these
events.

 4-36

VOICE_RESOURCE_UNSET_EVENT

BOOL DevIoControl(
hdriver, XDS device driver handle
(DWORD)VOICE_RESOURCE_UNSET_EVENT, IOCTL low-level driver command
&event_handle, pointer to an event HANDLE
sizeof(HANDLE *), size of the event HANDLE
NULL, (not used)
0, (not used)
&data_length, pointer to number of bytes returned
NULL); (not used)

HANDLE event_handle;

Purpose
This command is used to disable signaling. The driver will no longer notify the calling function
or application when a voice playback message is received from an XDS voice playback board.

Returns
The command will not return a value from the driver.

Comments
This command is used to disable the signaling feature of the driver for voice resource
information messages. Signaling may be re-enabled by issuing a
VOICE_RESOURCE_SET_EVENT command. This command should be issued before the
driver is closed.

 4-37

This page was intentionally left blank.

	Contents.pdf
	1	ISA / PCI Driver Package Software Installation and Removal
	2	Driver Package Programs and Source Code
	3	XDS T1 / E1 Configuration Utility Program
	4	XDS Windows 2000/XP PCI And ISA Driver IOCTL Description

	Software.pdf
	PCI Driver Command Line Test
	ISA Driver Command Line Test
	Signaling Mechanism Test Utilities
	DLL Command Line Test
	XdsPciRes
	Xds_Board_Dump
	T1E1LedDemo
	XDS_T1E1_Config
	T1/E1 board configuration utility. Please refer to section 3, “XDS T1 / E1 Configuration Utility Program”, for a description of this utility.
	XDS_BRI_Config
	For more information about the XDS Basic Rate ISDN Board, please refer to the BRI technical manual for the appropriate board.
	MC-3 Fiber Ring Integrity Test
	Not all boards support this feature, so please check your board’s reference manual to see if this feature is on your board and that it has the correct firmware.
	As of this release the only audio formats supported for playback are raw A-law, raw (-law, raw ADPCM, and A-law & (-law in .wav format.
	Not all boards support this feature, so please check your board’s reference manual to see if this feature is on your board and that it has the correct firmware.
	(As of this release the only audio formats supported for playback are 6kHz and 8kHz ADPCM, 8 bit A-law & (-law in .wav format, and 16 bit Linear PCM in .wav format.
	(As of this release the only audio formats supported for recording are 8kHz ADPCM, 8 bit A-law & (-law in .wav format, and 16 bit Linear PCM in .wav format.
	7.0	Source Code And Directory Structure
	
	
	
	Binary file directory -
	Source code directories -

	T1_E1_Config.pdf
	XDS T1 / E1
	Step 1 (Select the board to be configured) –

	Step 2 (Configuring each span) –
	Step 3 (Configuring span channels) –
	Step 4 (Saving and using configured data) –

	IOCTL.pdf
	XDS_GET_BUS_DEVICE_NUM	- obtain the PCI bus and device number for a given
	XDS PCI board (PCI only)
	XDS_QUEUE_USER_MSG	- place a board message on the receive message
	queue (PCI only)
	
	
	
	
	VOICE_RESOURCE_UNSET_EVENT

	XMT
	RCV
	WRITE_DPRAM
	XDS_QUEUE_USER_MSG
	
	
	
	
	
	STATUS_BUFFER_TOO_SMALL 		size of data structure passed in is incorrect
	STATUS_DATA_ERROR			board number used, not valid
	STATUS_BUFFER_TOO_SMALL 		size of data structure passed in is incorrect
	STATUS_DATA_ERROR			board number used, not valid

	VOICE_WRITE_DPRAM
	
	
	
	
	
	STATUS_BUFFER_TOO_SMALL 		size of data structure passed in is incorrect
	STATUS_DATA_ERROR			board number used, not valid
	STATUS_BUFFER_TOO_SMALL 		size of data structure passed in is incorrect
	STATUS_DATA_ERROR			no messages on voice playback message queue

	VOICE_SET_EVENT
	
	
	
	
	
	STATUS_BUFFER_TOO_SMALL 		size of data structure passed in is incorrect

	VOICE_UNSET_EVENT
	
	
	
	
	
	STATUS_BUFFER_TOO_SMALL 		size of data structure passed in is incorrect
	STATUS_DATA_ERROR			no messages on voice resource message queue
	STATUS_BUFFER_TOO_SMALL 		size of data structure passed in is incorrect
	STATUS_DATA_ERROR			board not available
	STATUS_NOT_IMPLEMENTED		an invalid XMT command was attempted to be sent

	VOICE_RESOURCE_WRITE_DPRAM_DATA
	VOICE_RESOURCE_WRITE_DPRAM_PARAMETERS
	
	
	
	
	
	STATUS_BUFFER_TOO_SMALL 		size of data structure passed in is incorrect

	VOICE_RESOURCE_UNSET_EVENT

	IOCTL.pdf
	XDS_GET_BUS_DEVICE_NUM	- obtain the PCI bus and device number for a given
	XDS PCI board (PCI only)
	XDS_QUEUE_USER_MSG	- place a board message on the receive message
	queue (PCI only)
	
	
	
	
	VOICE_RESOURCE_UNSET_EVENT

	XMT
	RCV
	WRITE_DPRAM
	XDS_QUEUE_USER_MSG
	
	
	
	
	
	STATUS_BUFFER_TOO_SMALL 		size of data structure passed in is incorrect
	STATUS_DATA_ERROR			board number used, not valid
	STATUS_BUFFER_TOO_SMALL 		size of data structure passed in is incorrect
	STATUS_DATA_ERROR			board number used, not valid

	VOICE_WRITE_DPRAM
	
	
	
	
	
	STATUS_BUFFER_TOO_SMALL 		size of data structure passed in is incorrect
	STATUS_DATA_ERROR			board number used, not valid
	STATUS_BUFFER_TOO_SMALL 		size of data structure passed in is incorrect
	STATUS_DATA_ERROR			no messages on voice playback message queue

	VOICE_SET_EVENT
	
	
	
	
	
	STATUS_BUFFER_TOO_SMALL 		size of data structure passed in is incorrect

	VOICE_UNSET_EVENT
	
	
	
	
	
	STATUS_BUFFER_TOO_SMALL 		size of data structure passed in is incorrect
	STATUS_DATA_ERROR			no messages on voice resource message queue
	STATUS_BUFFER_TOO_SMALL 		size of data structure passed in is incorrect
	STATUS_DATA_ERROR			board not available
	STATUS_NOT_IMPLEMENTED		an invalid XMT command was attempted to be sent

	VOICE_RESOURCE_WRITE_DPRAM_DATA
	
	
	
	
	
	STATUS_BUFFER_TOO_SMALL 		size of data structure passed in is incorrect

	VOICE_RESOURCE_UNSET_EVENT

