

XDS Windows 2000/XP

H.110 Driver
Reference Manual

Driver Version 1.5
November 2004

American Tel-A-Systems, Inc.

258M011F ©
Printed in U.S.A. All rights reserved.

This page was intentionally left blank.

Contents

1 cPCI Driver Package Software Installation and Removal
Driver Package Contents ..1-3
PCI Hardware Overview/Installation..1-3
Low-level Driver Installation..1-4
Driver/Software Package Installation..1-10
Driver/Software Package Removal ...1-10

2 Driver Package Programs and Source Code
XDS Source Code Description ...2-3
XDS Tests / Utilities...2-3
XDS Hot-plug Demo Program ...2-10
XDS Downloader Program...2-11
XDS DLL Descriptions ..2-11
XDS Source Code Directory Structure ...2-13

3 XDS Windows 2000/XP Driver IOCTL Description
Overview ..3-3
cPCI Application Interface ...3-5
DevIoControl ..3-6
XMT...3-7
RCV..3-8
RCV_QUERY..3-10
READ_DPRAM...3-12
WRITE_DPRAM ...3-13
XDS_RESET..3-14
XDS_HR_ACK..3-15
XDS_GET_BUS_DEVICE_NUM...3-16
XDS_SLEEP ..3-17
XDS_RESUME..3-18
XDS_QUEUE_USER_MSG..3-19
XDS_GET_BOARD_INFO...3-20
READ_PLX_INT...3-21

4A XDS MVIP-90 Software Interface Description

4B XDS MVIP-90 Command Reference
CONFIG_CLOCK...4B-3
DUMP_SWITCH ..4B-5
QUERY_OUTPUT ...4B-7
QUERY_SWITCH_CAPS..4B-9
RESET_SWITCH ...4B-10
SAMPLE_INPUT ...4B-11
SET_OUTPUT ..4B-12
SET_TRACE...4B-14
SET_VERIFY ...4B-15
TRISTATE_SWITCH...4B-16

5A XDS MVIP-95 Software Interface Description

5B XDS MVIP-95 Command Reference
MVIP95_CMD_CONFIG_8KREF_CLOCK..5B-3
MVIP95_CMD_CONFIG_BOARD_CLOCK..5B-4
MVIP95_CMD_CONFIG_LOCAL_STREAM..5B-6
MVIP95_CMD_CONFIG_LOCAL_TIMESLOT ..5B-7
MVIP95_CMD_CONFIG_NETREF_CLOCK...5B-8
MVIP95_CMD_CONFIG_SEC8K_CLOCK..5B-9
MVIP95_CMD_CONFIG_STREAM_SPEED...5B-10
MVIP95_CMD_QUERY_BOARD_CLOCK...5B-11
MVIP95_CMD_QUERY_BOARD_INFO ...5B-13
MVIP95_CMD_QUERY_DRIVER_INFO ..5B-14
MVIP95_CMD_QUERY_LOCAL_STREAM...5B-15
MVIP95_CMD_QUERY_LOCAL_TIMESLOT ...5B-16
MVIP95_CMD_QUERY_OUTPUT ..5B-17
MVIP95_CMD_QUERY_STREAM_SPEED..5B-18
MVIP95_CMD_QUERY_SWITCH_CAPS ...5B-19
MVIP95_CMD_RESET_SWITCH...5B-20
MVIP95_CMD_SAMPLE_INPUT...5B-21
MVIP95_CMD_SET_OUTPUT ...5B-22

6A XDS CT-BUS Software Interface Description

6B XDS CT-BUS Command Reference
CTBUS_CMD_CONFIG_8KREF_CLOCK...6B-3
CTBUS_CMD_CONFIG_BOARD_CLOCK...6B-4
CTBUS_CMD_CONFIG_LOCAL_STREAM...6B-6
CTBUS_CMD_CONFIG_LOCAL_TIMESLOT ...6B-7
CTBUS_CMD_CONFIG_NETREF_CLOCK..6B-8
CTBUS_CMD_CONFIG_SEC8K_CLOCK...6B-9
CTBUS_CMD_CONFIG_STREAM_SPEED..6B-10
CTBUS_CMD_QUERY_BOARD_CLOCK..6B-11
CTBUS_CMD_QUERY_BOARD_INFO ..6B-12
CTBUS_CMD_QUERY_DRIVER_INFO ...6B-13
CTBUS_CMD_QUERY_LOCAL_STREAM..6B-14
CTBUS_CMD_QUERY_LOCAL_TIMESLOT ..6B-15
CTBUS_CMD_QUERY_OUTPUT..6B-16
CTBUS_CMD_QUERY_STREAM_SPEED...6B-17
CTBUS_CMD_QUERY_SWITCH_CAPS ..6B-18
CTBUS_CMD_RESET_SWITCH..6B-19
CTBUS_CMD_SAMPLE_INPUT..6B-20
CTBUS_CMD_SET_OUTPUT ..6B-21

A MVIP-Related and XDS Command Codes
MVIP-90 Command Codes ...A-3
MVIP-95 Command Codes ...A-3
CT-BUS Command Codes ..A-4
XDS Command Codes...A-5

B MVIP-Related and XDS Return Codes
MVIP-90 Return Codes ...B-3
MVIP-95 Return Codes ...B-4
CT-BUS Return Codes ..B-5
XDS Return Codes ..B-6
XDS IOCTL Return Codes..B-7

XDS Windows 2000/XP H.110 Driver Reference Manual

Author: Brian D. Riek
Copyright ©; American Tel-A-Systems, Inc., November 2004
Printed in U.S.A. All rights reserved.

This document and the information herein is proprietary to American Tel-A-Systems, Inc.
It is provided and accepted in confidence only for use in the installation, operation, repair
and maintenance of Amtelco equipment by the original owner. It also may be used for
evaluation purposes if submitted with the prospect of sale of equipment.

This document is not transferable. No part of this document may be reproduced in whole
or in part, by any means, including chemical, electronic, digital, xerographic, facsimile,
recording, or other, without the expressed written permission of American Tel-A-Systems,
Inc.

The following statement is in lieu of a trademark symbol with every occurrence of
trademarked names: trademarked names are used in this document only in an editorial
fashion, and to the benefit of the trademark owner with no intention of infringement of the
trademark. “H.110” is a registered trademark of the ECTF. “MVIP”, “MVIP-90”,
“MVIP-95”, “MVIP Bus”, and Multi-Vendor Integration Protocol are registered
trademarks of GO-MVIP, Inc. “CT-BUS” is a registered trademark of Natural
Microsystems. “Windows 2000” and “Windows XP” are registered trademarks of
Microsoft, Inc.

American Tel-A-System, Inc.
608-838-4194

4800 Curtin Drive,  McFarland, WI 53558, USA
http://www.amtelco.com/

258M011F

http://www.amtelco.com/

Driver Package Software
Installation And Removal

 1-2

This page was intentionally left blank.

 1-3

Driver Package Contents -

The XDS Windows 2000/XP H.110 Driver package comes in the form of a CD-
ROM disc (Amtelco P/N 258CD004) or self-extracting executable - if downloaded.
This disc/image contains the device driver along with an .inf file (which is used for
the initial driver installation), the WISE installer installation program for the driver
application suite and the source code. If downloaded, the user will need to install
the driver package first, it will then copy the PCI low-level driver
(xds_2000_110.sys) into the \Program Files\Amtelco\H110\ directory along with
the .inf file.

1.0 Hardware Installation

If the chassis does not support PCIXCAP or M66EN (which are defined in the Hot
Swap specification PICMG 2.1 R2.0), then jumper JW4 on the XDS H.110 board
will need to be installed. A good indication of this would be if, once the board is
plugged in, that the blue hot-swap LED remains on.

Each XDS H.110 board uses 8K of memory and comes in the cPCI form factor.
The resources for each PCI device in the system can be viewed in the system BIOS
at boot-up.

You will need to be sure that there is a PCI interrupt available for the cPCI
board(s).

As with all device drivers in most operating systems, the user must have
administrator privileges in order to install/remove a device driver.

You will need to power down the system that the board(s) will be installed in.
Make sure to save any work that you may have been doing. Follow the board’s
hardware manual precisely for the board installation portion. When this step is
completed, power the system back on.

2.0 Driver Installation

After Windows is finished starting up, the Found New Hardware dialog box will
appear (Figure 1.0).

Figure 1.0

Now another window (Figure 1.1), the Found New Hardware Wizard, will appear
over the first one. Click on the Next > button.

Figure 1.1

 1-4

The next window is the Install Hardware Device Drivers window (Figure 1.2).
Select the Search for a suitable driver for my device (recommended) option and
click on the Next > button.

Figure 1.2

 1-5

At this point of the installation, insert the driver disc into the CD-ROM drive of the
system. Now you will need to locate the driver files (Figure 1.3). Select the CD-
ROM drives option and click on the Next > button.

Figure 1.3

 1-6

The next window should look like Figure 1.4 when “xds_2000_110.inf” is found
on the disc. Simply click on the Next > button now.

Figure 1.4

 1-7

The last window to appear during the install of a new device is like the one
pictured in Figure 1.5. Now, click on the Finish button.

Figure 1.5

That concludes the installation process of the device driver. Each additional board
will go from step 1 (Figure 1.0) immediately to the last step (Figure 1.5) and
require no further intervention.

 1-8

When Windows 2000/XP starts up, it will assign the memory offset, IRQ, and I/O
port dynamically for each PCI board. These settings may be viewed in the Device
Manager. Once the Device Manager is open, you will notice that the each XDS
H.110 board will appear under the Computer Telephony Device class (Figure 2.0).

Figure 2.0

The parameter values will be saved in the Windows Registry and should never be
modified or removed directly by the user. These parameters are saved at:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\XDS_2000_110

If problems occur with the driver, they will be identified in the Event Viewer with
the Event Source “XDS_2000_110” and an Event Code.

 1-9

 1-10

3.0 Driver Package Installation

You are now ready to install the driver package (application suite and source code).
This procedure will use a installation wizard setup created with WISE
InstallMaster (version 8.0), which will guide you step by step with instructions.

Click on the Start menu button, and select the Run… command. Click on
Browse… and locate your CD-ROM drive. When you locate the CD-ROM,
highlight the setup.exe file, and click the Open button. This will begin the setup
wizard.

When finished, the setup will have created a start menu item for your applications.

4.0 Driver(s) and Driver Package Removal

To ensure the proper removal of the XDS driver package, both drivers (if both
were installed), and any other components; please follow the following steps in
order:

1) Close all XDS-related programs and project workspaces, if open. Save any
work necessary to your development.

2a) First, remove the device driver from the system. You will need to run the
Add/Remove Hardware utility in the Control Panel (Figure 3.0) and click
Next >.

Figure 3.0

 1-11

2b) Next, select the Uninstall/Unplug a device option and click on Next > (as in
Figure 3.1).

Figure 3.1

 1-12

2c) Then, select Uninstall a device and click on Next > in the next window (like
the one in Figure 3.2).

Figure 3.2

 1-13

2d) You will now need to select the Amtelco H.110 Infinity Telephony Board(s)
from the device list (as pictured in Figure 3.3) and click Next >.

Figure 3.3

 1-14

2e) Select Yes, I want to uninstall this device option from the following window
(Figure 3.4) and click on Next >.

Figure 3.4

 1-15

2f) Click on Finish > button in the last window (Figure 3.5).

Figure 3.5

1) Now, you may un-install the application suite and source code from the
system. You will need to run the Add/Remove Programs utility in the
Control Panel in order to do this. The driver package will be listed as the
“XDS Win 2K/XP H.110 Driver Pkg”.

2) Power off you system and remove any XDS hardware installed.

3) Finished!!!

 1-16

Driver Package
Programs and Source Code

 2-2

This page was intentionally left blank.

 2-3

1.0 XDS Source Code Description

All of the source code used to build the programs, DLLs, and driver has been
included for the user’s convenience. If any or all of the code is “re-used”, the
American Tel-A-Systems, Inc. copyright information must be included with it.
All of the project workspaces for this release package have a pre-processor defines
(ie: “XDS_H110” and “XDS_2000_ARC”) in them, due to the fact that many of
the projects included may work with other XDS driver packages. Microsoft Visual
C++ 6.0 (32 bit) was used to create, compile, and build all of the applications
included. Microsoft Visual C++ 6.0 (32 bit) and the Microsoft Windows 2000
DDK were used to compile and build the low-level driver (xds_2000_110.sys).

2.0 Tests / Utilities

NOTE: All message strings sent to any board, using any one of the provided
utilities, must be in CAPITAL letters. In addition, only application should be
opened at a time!

XdsUtil (GUI Utility)
A Graphical User Interface, XdsUtil, has been provided for simple and user-
friendly communication with XDS boards. There is a pull-down list used to select
which board to transmit messages to, and one to display the received messages
from. Message strings sent are typed in the edit box above the message receive list
box. Boards that have physical interface ports will display the port states in the
port state window on the right. BRI boards will display the Layer 1 port states in
this window. The port range displayed may be controlled by changing the port
range spin control. Click on the right arrow to show the next block of ports, and to
go back click on the left arrow. This program uses message polling to receive
messages from the driver. A button labeled “Show Boards” is used to display a list
of present boards. A modal dialog box will appear, when finished, click on the
“Done” button and you will return to the main dialog. The “Clear Message
Window” button simply clears the messages displayed in the message receive list-
box.

 2-4

Like all of the XDS applications, it should be used alone and not in combination
with any other XDS programs or utilities. Opening an application while one is
already running may result in message passing problems. This demo program uses
a “polling” scheme of receiving messages from a board, and is less efficient than
one of the interrupt-driven demos, such as Sig_Util.

Driver Command Line Test
The test program test_drv is a simple program, written in ‘C’, that demonstrates
how to make PCI driver calls. It is a text-based command line application that
makes IOCTL calls directly to the driver. The syntax is “test_drv n”, where n is
the number of an installed XDS board, or just “test_drv” to display a list of XDS
boards to use. The program first displays any messages that might be already on
the board’s queue(s). Then, the options: s = send, r = receive, or q = quit, are
displayed. To send a message, type in ‘s’ and then the command string followed
by pressing the “Enter” key.

To receive any messages that might be on the message or query queue, type in ‘r’
and then the “Enter” key. The responses along with any messages on the board
will be displayed on the screen for the user. To quit the program, type in ‘q’ and
then press the “Enter” key. Any messages on the queues will be displayed and
then the program will terminate.

Signaling Mechanism Test Utilities
Several programs are available to test and illustrate how the signaling capability of
the driver. It is a more efficient method of message handling from the driver.
Once the driver receives a message from the board, it arms the signaling
mechanism notifying the application of a message to be received.

Sig_Util is a GUI based program that allows the user to communicate with any
XDS board. It is similar to XdsUtil, in the respect that it can also be used to send
and receive messages from boards. Sig_Util has one drop-down list to select the
board to be used. Once that the board is selected, you may communicate with it by
typing in message strings in the in the edit box above the message receive list box.
 To send it, press the “Enter” key or click on the “Send” button.

 2-5

A button, labeled “Layer 3 Msg”, is used to demonstrate the transmission of a
Layer 3 message to BRI boards. It is intended for use with BRI boards only. To
exit the program, click on the “Exit” button. This is one of the more efficient of
the XDS demo programs, and is recommended to model the users program around.
 It is a good example of how an application uses the XDS Native Library function
set in conjunction with the drivers’ signaling events. Using interrupts is much
more efficient than polling for messages, and the user should keep the design
philosophy in mind when writing ones own application.

Sig_Util2 (2 Board GUI Communication Utility w/Signaling)
A Graphical User Interface, Sig_Util2, has been provided for multiple board
communication with that includes signaling. There is a pull-down list used to
select which two boards to transmit messages to. The user may choose any two
boards at any time during run-time. Receive messages (from the board) for the
first board “Board 1” are displayed in the Board 1 receive messages window, and
receive messages (from the board) for the second board “Board 2” are displayed in
the Board 2 receive messages window. Transmit messages (to the board) for the
first board “Board 1” are entered in the Board 1 transmit message edit box, and
transmit messages (to the board) for the second board “Board 2” are entered in the
Board 2 transmit message edit box.

The signal_test program sends a command repeatedly to a selected board (from
drop-down list) when the “Start” button is pressed. Nothing will be displayed on
the screen while messages are being sent. When the “Stop” button is selected, the
program will stop sending messages and will count the received responses. It will
then verify if the number of responses differs from the number of messages sent is
the same. The program will display the results and statistics for the user. When
finished, click on the “Exit” button to exit and close the program.

 2-6

DLL Command Line Tests
The test program test_dll.exe is an example of how the XDS H.110 Native DLL
can be linked to a program and tested. All of the functions in this program are
included in the XdsLib110 DLL. The syntax is “test_dll n”, where n is the
number of an installed XDS board, or just “test_dll” to display a list of XDS
boards to use. The program will first display any messages that might be already
on the board’s queue(s). Then, the options: s = send, r = receive, l =
send_layer3_msg, or q = quit, are displayed.

To send a message, type in ‘s’ and then the command string followed by pressing
the “Enter” key. To receive any messages that might be on the message or query
queue, type in ‘r’ and then the “Enter” key. The responses along with any
messages on the board will be displayed on the screen for the user.

To send a Layer 3 test message (intended for BRI boards only), type in ‘l’ and then
press the “Enter” key. To quit the program, type in ‘q’ and then press the “Enter”
key. Any messages on the queues will be displayed and then the program
terminates.

The test program testmv90.exe is an example of how to open XdsMv90.dll and
make SwDevIoctl calls to it. The test program syntax is “testmv90 n”, where n is
the number of an installed XDS board, or just “testmv90” to display a list of XDS
boards to use. The testmv90 program communicates with the DLL and displays
the response of several high-level commands that are sent to the XDS board.

The test program testmv95.exe is an example of how to open XdsMv95.dll and
make SwDevIoctl calls to it. The test program syntax is “testmv95 n”, where n is
the number of an installed XDS board, or just “testmv95” to display a list of XDS
boards to use. The testmv95 program communicates with the DLL and displays
the response of several high-level commands that are sent to the XDS board.

The test program testctbus.exe is an example of how to open XdsCtBus.dll and
make SwDevIoctl calls to it. The test program syntax is “testctbus n”, where n is
the number of an installed XDS board, or just “testctbus” to display a list of XDS
boards to use. The testctbus program communicates with the DLL and displays
the response of several high-level commands that are sent to the XDS board.

 2-7

XdsPciRes
The XdsPciRes program is a command line utility that takes no parameters and
simply displays each PCI board number, board ID code, PCI bus number, and PCI
device/function (slot) number.

XDS_BRI_Config
When you start the program, the first window will show the board number, board
ID, version string, and number of ports each XDS BRI boards in the system. If no
XDS BRI board is found in the system, the program will exit.

You can choose the board number that you want to initialize from the combo box
and click the “config” button to start a configuration window.

1. Choose the protocol layer for each port.
North American (NI-1/NI-2): Layer 2, Layer3, AT&T Custom, CACH_EKTS,
DMS-100, or National ISDN.
EURO-ISDN: Layer 2, Layer 3, or Point-to-Point.

2. Choose the port type for each port.
For the S/T board: choose “TE” for terminal equipment, choose “NT” for network
terminations, and choose UNDEFINED for not used ports. For the U-Interface
board: choose “LT” for line termination ports and choose “NT” for network
terminations.

3. Enter the Directory Number and SPID for each B Channel.
Each port has two (2) B channels. For the “NT” ports, you only need to enter the
directory number. For the “TE” ports, you need to enter both Directory Number
and SPID number.

4. There are three options, with check boxes. Auto TEI Assignment and TEI
Check Response format for North American (NI-1 & NI-2) and Incoming Address
Checking for Euro ISDN.

5. If you want the data to automatically be set each time the system is booted, you
check the “save on board” check box.

6. If the number of ports is greater than 16 (ie: H.110 board), you should click the

 2-8

“Port 10-1F” button to set the data for ports 0x10 to 0x1F.

7. After you have done all data entry, you should click “Ok” button. The program
will get all data and send it to the board.

8. You can save all the initialization data into an ASCII file (on your PC) by
clicking the “Save to File” button. This file will be saved in the local directory
with the extension “cfg”. Next time, you can retrieve the data from an existed file
by clicking the button “Retrieve”.

For more information about the XDS Basic Rate ISDN Board, please refer to the
BRI technical manual for the appropriate board.

MC-3 Fiber Ring Integrity Test

The test program Mc3_Fiber_Test.exe is a test utility that tests ring integrity
between two H.100 or H.110 MC3 boards. It is a two-part (side) process with
three steps on each chassis, that needs some user-intervention. The program will
first initialize each board by setting up the encoding mode, clock mode, and ring
mode for each.

The user will then follow these steps in order:
1) Designate which “side” chassis will be the receive and which will be the
transmit.
2) On the transmit side - type in “mc3_fiber_test n”, where n is the number of an
installed XDS board, in a command prompt window.

3) Now select the ‘T’ (transmit) operating mode. This will send a pattern of “55”
to the receive chassis.

4) On the receive side - type in “mc3_fiber_test n”, where n is the number of an
installed XDS board, in a command prompt window.

5) Now select the ‘R’ (receive) operating mode. This will display the pattern
received to the user. It will then instruct the user to go back to the transmit chassis
and send the next pattern.
6) On the transmit side enter a ‘Y’ if the correct pattern, “55”, was received by the
receive chassis. Now the transmit side will send a pattern of “FF” to the receive

 2-9

chassis.

7) On the receive chassis, hit the ‘Enter’ key. This will display the pattern received
to the user. The pattern here should now be “FF”. It will then instruct the user to
go back to the transmit chassis and send the next pattern.

8) On the transmit side enter a ‘Y’ if the correct pattern, “FF”, was received by the
receive chassis. Now the transmit side will send a pattern of “AA” to the receive
chassis.

9) On the receive chassis, hit the ‘Enter’ key. This will display the pattern received
to the user. The pattern here should now be “AA”.

If any of the patterns received in any one of the receive steps was not what it was
suppose to be, then re-check your fiber connections and try this program again. If
it does not work after that, then report this problem to an Amtelco XDS Field
Engineer or Customer Service representative.

 2-10

3.0 Hot-plugging Hardware

All of the XDS H.110 boards have the ability to be removed while the system is up
and running and then replaced. The user must keep in mind that boards can only
be replaced with the same type of board in the same physical slot as the one
removed. So, if the user removes an XDS H.110 MC3 board from slot 3 in the
system, they must replace it with another XDS H.110 MC3 board in that same
physical slot. If the user has a 2 piece board set, like the XDS H.110 BRI S/T
board, they would remove the front board first, then the rear I/O board second.
When replacing, the rear I/O board would be inserted first and the front board
second.

An example application, tstchs, was written to demonstrate to the user who to
properly call each IOCTL function. The syntax is “tstchs n”, where n is the
number of an installed XDS board, or just “tstchs” to display a list of XDS boards
to use. The user options are displayed during run-time. To remove an XDS H.110
board using ‘tstchs’, the user will use the ‘d’ option from the menu. Then the user
will remove the board and replace it with the new board (in the same H.110 chassis
slot). Lastly, the user will use the ‘i’ option from the menu to insert the board.

 2-11

4.0 Downloader

Most of the XDS boards are equipped with flash memory, which contains the
board program. Refer to the board reference manual to check for this feature. New
revisions of the program can be downloaded to this memory using the downloader
program wn386dlc. To use this program, the driver must be started and recognize
the board. The program to be downloaded is contained in a .hex file. This file will
include a header identifying the board type so that it can only be loaded onto a
compatible board. The syntax for the downloader is:

wn386dlc <hexfile.hex> <segment> <board number (decimal)>

where the segment specified is either a ‘C’ for the control processor or ‘D’ for the
DSP processor. For example

wn386dlc 258H001.HEX c 1

will flash the firmware file, 258H001.hex, to the control processor onto board 1.

5.0 DLL Descriptions

XdsLib110 DLL
An “XDS” DLL (XdsLib110.dll) has been provided to access XDS H.110 native
board functions. These include proprietary functions for use with XDS boards.
Many of the applications in this package use this DLL. When creating a new
application, be sure to link in XdsLib110.lib in the project workspace. Details of
the functions included in this library may be found in the document XDS H.110
Library Reference Manual, 258M013.

XdsMv90
The DLL provides high-level native XDS and MVIP-compliant commands along
with the mandatory scope of MVIP-90 commands. A listing and description of
each of these commands is included with this reference manual, in the “MVIP-90
Software Interface Description” section.

XdsMv95

 2-12

The DLL provides high-level native XDS and MVIP-compliant commands along
with the mandatory scope of MVIP-95 commands. A listing and description of
each of these commands is included with this reference manual, in the “MVIP-95
Software Interface Description” section.

XdsCtBus
The DLL provides high-level native XDS and MVIP-compliant commands along
with the mandatory scope of CT-BUS commands. A listing and description of
each of these commands is included with this reference manual, in the “CT-BUS
Software Interface Description” section.

 2-13

6.0 Source Code And Directory Structure

This package contains all of the source code for the XDS device driver, DLLs,
driver installation application, and test & communication programs. The following
is a description of the directory hierarchy:

Binary file directory -
\H110\bin\intel - executables, DLLs, driver, and downloader

Source code directories -
\H110\source\Dlls\XdsLib110 - xdslib110.dll (XDS H.110 native

functions)
\H110\source\Dlls\XdsMv90 - xdsmv90.dll (MVIP-90 functions)
\H110\source\Dlls\XdsMv95 - xdsmv95.dll (XDS functions)
\H110\source\Dlls\XdsCtBus - xdsctbus.dll (XDS functions)
\H110\source\Downloader - wn386dlc downloader program
\H110source\Mc3_Fiber_Test - MC3 fiber ring test source code
\H110\source\Driver - xds_2000_110.sys low-level driver
\H110\source\Include - include (header) files
\H110\source\Lib - library files for Intel x86 processors
\H110\source\Wise - Wise installation project file
\H110\source\Shared - shared source code directory
\H110\source\Sig_Util - Sig_Util application source code
\H110\source\Sig_Util2 - Sig_Util2 application source code
\H110\source\Signal_Test - Signal_Test application source code
\H110\source\Test_dll - xdslibmv.dll test
\H110\source\TestMv90 - xdsmv90.dll test
\H110\source\TestMv95 - xdsmv95.dll test
\H110\source\TestCtBus - xdsctbus.dll test
\H110\source\Tstchs - tstchs application source code
\H110\source\Test_drv - test_drv.exe driver test
\H110\source\XdsUtil - xdsutil (utility) application
\H110\source\XDS_BRI_Config - xds_bri_config (utility) application
\H110\source\Station_Config - station_config (utility) application
\H110\source\XdsPciRes - xdspcires (utility) application

XDS Windows 2000/XP
H.110 Driver

IOCTL Description

 3-2

This page was intentionally left blank.

 3-3

Overview

The XDS Windows 2000/XP H.110 Driver is designed to provide an interface
between XDS boards and applications running under Windows 2000 and Windows
XP. It contains facilities to send and receive messages from any XDS board. There
are also functions that allow for the direct reading and writing of the Dual-Ported
Ram, which can be used for diagnostic and software downloading purposes.

A common interface is used by all XDS boards, regardless of type. Control of the
boards is accomplished through command strings, which are in the form of NULL
terminated ASCII strings that are in CAPITAL letters. Responses,
acknowledgments, state changes and error information are also passed from the
XDS boards in the form of ASCII strings. Each board has a transmit and receive
mailbox and a set of corresponding flags. Each board also provides a limited
amount of buffering (eight messages deep) in either direction.

The DevIoControl supports the following commands:

XMT - transmit a message to a board
RCV - receive a message from the response queue
RCV_QUERY - receive a message from the query queue
READ_DPRAM - read from dual-ported RAM on a board
WRITE_DPRAM - write to dual-ported RAM on a board
XDS_RESET - reset specified device (ISA High Density Line Boards,

ISA BRI, all H.100, and all H.110 boards)
XDS_HR_ACK - hardware removal (Hot-swap/H.110 only)
XDS_SLEEP - de-activate board and remove function
XDS_RESUME - re-activate board and insert function
XDS_GET_BUS_DEVICE_NUM - obtain the PCI bus and slot number for a given

XDS PCI board
XDS_QUEUE_USER_MSG - place an ASCII message on the receive message

queue
XDS_GET_BOARD_INFO - get board ID, version, and number of ports
READ_PLX_INT - read the PLX (PCI) interrupt register status

 3-4

For the purposes of these commands, the board is specified by board_number.

For cPCI/H.110 boards, this number will correspond to the cPCI device number.
These numbers will range from 1-30.

The transmit command writes messages directly to the mailbox of the appropriate
board. The driver places received messages on one of two queues.
Acknowledgments, state change messages, and error messages are passed through
the receive queue. Query responses and Version Request responses are passed
through a separate receive query queue. Each queue is shared by all of the XDS
boards in the system. A driver command is provided for reading each queue. The
receive queue can handle up to 31 messages while the query queue can handle 7. If
the queue is full, the driver will discard additional messages. It is therefore the
responsibility of the application to check the queues frequently enough so that they
do not fill up.

The driver can be set to notify the application when a new message has arrived
from an XDS board using the signaling mechanism. This facility eliminates the
need for an application to continuously poll the driver.

Commands are provided for reading and writing the dual-ported RAM, which each
board shares with the host processor. These commands include protection to
prevent reading or writing outside of the dual ported memory on a particular board
or for overwriting the mailboxes or configuration information on each board.

 3-5

cPCI Application Interface

Applications can interface directly to the driver by using the Windows 2000/XP
system calls GetDeviceViaInterface, CloseHandle, and DevIoControl. Through the
DevIoControl function, the application can send and receive messages directly to
and from XDS boards. It is also possible to directly read or write to the Dual-
Ported Ram on the XDS boards. OpenEventHandle is used to obtain an event
handle for the signaling mechanism.

GetDeviceViaInterface
Before an application can access the DevIoControl function, a connection to the
driver must be established and a file handle must be obtained. This function opens
up a connection to the device driver. All event queues will be initialized whenever
a connection with the XDS driver is opened.

GetDeviceViaInterface((LPGUID)&XDS_IO_GUID, 0);

The XDS_IO_GUID symbol refers to the Amtelco XDS Computer Telephony
Class (16F4A638-1B29-435B-85A1-0077D14CD8B2).

CloseHandle
This function will close an open object handle returned by the
GetDeviceViaInterface function.

BOOL CloseHandle(HANDLE hobject);

 3-6

DevIoControl

The DevIoControl call takes the form:
BOOL DeviceIoControl (Handle hDevice,
DWORD dwIoControlCode,
LPVOID lpInBuffer,
DWORD nInBufferSize,
LPVOID lpOutBuffer,
DWORD nOutBufferSize,
LPDWORD lpBytesReturned,
LPOVERLAPPED lpOverlapped);

It sends the requested command code directly to the specified device driver. The
driver will perform the operation and return a status flag indicating if the command
was completed correctly.

All requests to the XDS device driver are made by calling this function. Each type
of request may require different input and output structures, which are detailed in
the following pages.

OpenEventHandle
This function is used to obtain the event handle for the signaling mechanism. The
application makes a call to the function

OpenEventHandle(HANDLE *hOut)

If this function succeeds, the event handle is stored in hOut and the function returns
a 1. Otherwise, the event handle is null and the function returns a 0.
The application can then use the Win32 WaitForSingleObject call to wait on the
event handle for incoming messages.

 3-7

XMT

BOOL DevIoControl(
hdriver, device handle
(DWORD)XMT, transmit message command
&msg, pointer to message structure
sizeof(XDS_MSG), length of message
NULL, pointer to output structure
0, length of output structure
&data_length, pointer to number of bytes returned
NULL);

XDS_MSG msg;
typedef struct{
UCHAR board_number; the board number
char msg[32]; the ASCII text of message, NULL terminated
USHORT augTxRxLen; length of Layer 3 message
UCHAR augTxRxMesg[260]; body of Layer 3 message
}XDS_MSG *PXDS_MSG;

Purpose
This command is used to send messages to an XDS board. The board is specified in
board_number in the structure msg which corresponds to the board number. The message is
contained in the character array msg, and consists of a NULL terminated character string.

Returns
The function will return the following codes:

STATUS_SUCCESS success
STATUS_DATA_ERROR timeout or other problem with the board
STATUS_BUFFER_TOO_SMALL insufficient memory allocated in call

Comments
Transmit messages are not queued, but sent directly to the board. If the mailbox is full,
XDS_XMT will wait up to a tenth of a second before reporting a failure. Note that
augTxRxLen and augTxRxMesg are only valid when sending a Layer 3 message to an XDS
Basic Rate ISDN Board when the message in msg is of the format “LC” or “LR”.

 3-8

RCV

BOOL DevIoControl(
hdriver, device handle
(DWORD)RCV, receive message command
NULL, pointer to input structure
0, length of input structure
&msg, pointer to output structure
sizeof(XDS_MSG), length of output structure
&data_length, pointer to number of bytes returned
NULL);

XDS_MSG msg;

typedef struct{
UCHAR board_number; the board number
char msg[32]; the ASCII text of message, NULL terminated
USHORT augTxRxLen; length of Layer 3 message
UCHAR augTxRxMesg[260]; body of Layer 3 message
}XDS_MSG *PXDS_MSG;

Purpose
This command is used to receive normal messages from XDS boards. Query and version request
response messages are returned on the query response queue and read with the RCV_QUERY
command. The board sending the message is contained in board_number, while the text of the
message is in the character array msg in the form of a NULL terminated ASCII string.

Returns
The function will return the following codes:

STATUS_SUCCESS success
STATUS_DATA_ERROR no message available
STATUS_BUFFER_TOO_SMALL insufficient memory allocated in call

 3-9

Comments
This command checks to see if there is any message on the receive queue. If there is, it will
return with the message. If no message is present, it will return immediately with a return value
of STATUS_DATA_ERROR.

Normal messages are placed on the receive queue. These include acknowledgments, state change
messages, and error messages. Version request and query responses are placed on the query
response queue and can be read using the RCV_QUERY command.

The elements augTxRxLen and augTxRxMesg are only valid when receiving Layer 3 messages
on the XDS Basic Rate ISDN Board and the message in msg is of the form “LC” or “LR”.
If the queue becomes full, a “FULL QUEUE” message is placed on the queue with the
board_number for that message set to 0xFF. If this message is received, it indicates the
possibility that messages may have been lost. It is the responsibility of the application to check
for messages often enough to prevent this.

 3-10

RCV_QUERY

BOOL DevIoControl(
hdriver, device handle
(DWORD)RCV_QUERY, receive query message command
NULL, pointer to input structure
0, length of input structure
&msg, pointer to output structure
sizeof(XDS_MSG), length of output structure
&data_length, pointer to number of bytes returned
NULL);

XDS_MSG msg;

typedef struct{
UCHAR board_number; the board number
char msg[32]; the ASCII text of message, NULL terminated
USHORT augTxRxLen; length of Layer 3 message
UCHAR augTxRxMesg[260]; body of Layer 3 message
}XDS_MSG *PXDS_MSG;

Purpose
This command is used to receive version request responses and query responses, which are
placed on the query response queue by the driver. The board sending the message is contained in
board_number, while the text of the message is in the character array msg as a NULL terminated
ASCII string.

Returns
The function will return the following codes:

STATUS_SUCCESS success
STATUS_DATA_ERROR no message available
STATUS_BUFFER_TOO_SMALL insufficient memory allocated in call

 3-11

Comments
Unlike the RCV command, the RCV_QUERY command does not return immediately if there is
no message available. It will wait up to a half of a second for a message to be placed on the
queue. This implementation was made because of the finite time that it takes a board to respond
to a version request or a query. By doing so, it eliminates the need for the application to
implement a timeout mechanism.

Version response messages always begin with the letter ‘V’ and query responses always begin
with the letter ‘Q’ or have ‘Q’ as the second letter and do not have a first letter of ‘S’ or ‘E’.
These messages are always placed on the query response queue and must be read using the
RCV_QUERY command.

The elements augTxRxLen and augTxRxMesg never contain valid data when using
RCV_QUERY.

If the queue becomes full, a “FULL QUEUE” message is placed on the queue with the
board_number for that message set to 0xFF. If this message is received, it indicates the
possibility that messages may have been lost. It is the responsibility of the application to check
for messages often enough to prevent this.

 3-12

READ_DPRAM

BOOL DevIoControl(
hdriver, device handle
(DWORD)READ_DPRAM, read from DPRAM command
&ram_info, pointer to input structure
sizeof(XDS_BOARD_RAM), length of input structure
NULL, pointer to output structure
0, length of output structure
&data_length, pointer to number of bytes returned
NULL);

XDS_BOARD_RAM ram_info;

typedef struct {
UCHAR board_number; the board number
ULONG offset; the offset in bytes into dual-ported RAM
ULONG size; the number of bytes to be read
UCHAR *buffer; pointer to the buffer to receive the bytes read
} XDS_BOARD_RAM *PXDS_BOARD_RAM

Purpose
This command can be used to read directly the contents of a portion of the dual-ported RAM.
This may be done to obtain configuration information or for diagnostic purposes. The
information read is placed in a buffer supplied by the application.

Returns
The function will return the following codes:

STATUS_SUCCESS success
STATUS_DATA_ERROR attempt to read outside the on board RAM
STATUS_BUFFER_TOO_SMALL insufficient memory allocated in call

Comments
This command may be used to obtain configuration information on the board, such as the board
type, port states, etc. However, there also exist library functions that will accomplish the same
results which may be easier to use. It is also possible to use this command for diagnostic
purposes to display the contents of the mailboxes and the state of the transmit and receive flags.

 3-13

WRITE_DPRAM

BOOL DevIoControl(
hdriver, device handle
(DWORD)WRITE_DPRAM, write to DPRAM command
&ram_info, pointer to input structure
sizeof(XDS_BOARD_RAM), length of input structure
NULL, pointer to output structure
0, length of output structure
&data_length, pointer to number of bytes returned
NULL);

XDS_BOARD_RAM ram_info;

typedef struct {
UCHAR board_number; the board number
ULONG offset; the offset in bytes into dual-ported RAM
ULONG size; the number of bytes to be written
UCHAR *buffer; pointer to the bytes to be written
} XDS_BOARD_RAM *PXDS_BOARD_RAM

Purpose
This command is used to write information into the dual-ported RAM on the XDS board
specified in board_number. This is normally not necessary as the XMT command can be used to
control the board. However, for diagnostic purposes, or for downloading firmware, this
command may be used.

Returns
The function will return the following codes:

STATUS_SUCCESS success
STATUS_DATA_ERROR attempt to write to protected RAM or outside of on board

RAM
STATUS_BUFFER_TOO_SMALL insufficient memory allocated in call

Comments
The WRITE_DPRAM command is included in the command set to facilitate writing a firmware
downloader. It normally will not be necessary for an application to use this command. It
prevents writing to the first 256 bytes of the dual-ported RAM on ISA boards and the last 256
bytes on PCI boards. This area contains the mailboxes, flags, and configuration information for
the board.

 3-14

XDS_RESET

BOOL DevIoControl(
hdriver, device handle
(DWORD)XDS_RESET, hardware reset command
pData, pointer to input structure
sizeof(XDS_MSG), length of input structure
NULL, pointer to output structure
0, length of output structure
&data_length, pointer to number of bytes returned
NULL);

XDS_MSG msg;

typedef struct{
UCHAR board_number; the board number
char msg[32]; the ASCII text of message, NULL terminated
USHORT augTxRxLen; length of Layer 3 message
UCHAR augTxRxMesg[260]; body of Layer 3 message
}XDS_MSG *PXDS_MSG;

Purpose
This command is used to reset an entire board.

Returns
The function will return the following codes:

STATUS_SUCCESS success
XDS_ERR_IOCTL_RESET error resting board, board may not be functioning properly

Comments
This function does not replace the xds_reset_all() function in the XDS library. This will reset
entire board. It is valid for the ISA High Density Boards, all ISA BRI boards, all PCI/H.100
boards, and all of the cPCI/H.110 boards.

 3-15

XDS_HR_ACK

BOOL DevIoControl(
hdriver, device handle
(DWORD)XDS_HR_ACK, hardware removal acknowledge command
NULL, pointer to input structure
0, length of input structure
pData, pointer to output structure
sizeof(XDS_MSG), size of msg
&data_length, pointer to number of bytes returned
NULL);

XDS_MSG msg;

typedef struct{
UCHAR board_number; the board number
char msg[32]; the ASCII text of message, NULL terminated
USHORT augTxRxLen; length of Layer 3 message
UCHAR augTxRxMesg[260]; body of Layer 3 message
}XDS_MSG *PXDS_MSG;

Purpose
This command is used to monitor the removal of a cPCI/H.110 board.

Returns
The function will return the following codes:

STATUS_SUCCESS success
XDS_ERR_IOCTL_RESET error removing board from the IOCTL

Comments
This function is used only with XDS cPCI/H.110 hot-swap boards. It is a useful command when
using the hot-swap facilities of the hot-swap driver.

 3-16

XDS_GET_BUS_DEVICE_NUM

BOOL DevIoControl(
hdriver, device handle
(DWORD) XDS_GET_BUS_DEVICE_NUM, board ID command
pData, pointer to input structure
sizeof(XDS_BOARD_INFO), length of input structure
pData, pointer to output structure
sizeof(XDS_BOARD_INFO), length of output structure
&data_length, pointer to number of bytes returned
NULL);

XDS_BOARD_INFO info;

typedef struct{
char version[4]; the firmware version of a board
char id[4]; the ID of a board
UCHAR num_ports; number of ports
UCHAR board_number; board number
ULONG pci_bus_number; PCI bus number
ULONG pci_slot_number; PCI slot number
} XDS_BOARD_INFO, *PXDS_BOARD_INFO;

Purpose
This command is used to obtain the PCI bus and slot number of a specified board.

Returns
The function will return the following codes:

STATUS_SUCCESS success
XDS_ERR_GET_BUS_DEVICE_NUM error obtaining the PCI slot and bus number

Comments
This function is for PCI H.100 boards only.

 3-17

XDS_SLEEP
BOOL DevIoControl(
hdriver, device handle
(DWORD)XDS_SLEEP, hardware “sleep” remove board command
pData, pointer to input structure
sizeof(XDS_MSG), length of input structure
NULL, pointer to output structure
0, length of output structure
&data_length, pointer to number of bytes returned
NULL);

XDS_MSG msg;

typedef struct{
UCHAR board_number; the board number
char msg[32]; the ASCII text of message, NULL terminated
USHORT augTxRxLen; length of Layer 3 message
UCHAR augTxRxMesg[260]; body of Layer 3 message
}XDS_MSG *PXDS_MSG;

Purpose
This command is used to stop a board’s interrupts and prepare it to be physically removed from a
chassis.

Returns
The function will return the following codes:

STATUS_SUCCESS success
XDS_ERR_IOCTL_SLEEP error removing board, board may not be functioning

properly

Comments
The board should not be actively being used at the time of this function call. Therefore, the user
should exit all applications that may be communicating with the board.

In order for hot-plugging a board to work, the user must insert the same type of board in the same
physical slot as the one that was removed. If the board has a rear I/O board, the user will remove
the front board first, then the rear board. Then the user will replace the rear I/O board and insert
the front one.

 3-18

XDS_RESUME
BOOL DevIoControl(
hdriver, device handle
(DWORD)XDS_RESUME, hardware “resume” insert board command
pData, pointer to input structure
sizeof(XDS_MSG), length of input structure
NULL, pointer to output structure
0, length of output structure
&data_length, pointer to number of bytes returned
NULL);

XDS_MSG msg;

typedef struct{
UCHAR board_number; the board number
char msg[32]; the ASCII text of message, NULL terminated
USHORT augTxRxLen; length of Layer 3 message
UCHAR augTxRxMesg[260]; body of Layer 3 message
}XDS_MSG *PXDS_MSG;

Purpose
This command is used to add a board and prepare it to be used in place of an identical board that
is in the same physical slot as the one removed.

Returns
The function will return the following codes:

STATUS_SUCCESS success
XDS_ERR_IOCTL_RESUME error removing board, board may not be functioning

properly

Comments
In order for hot-plugging a board to work, the user must insert the same type of board in the same
physical slot as the one that was removed. If the board has a rear I/O board, the user will remove
the front board first, then the rear board. Then the user will replace the rear I/O board and insert
the front one.

 3-19

XDS_QUEUE_USER_MSG

BOOL DevIoControl(
hdriver, device handle
(DWORD)XDS_QUEUE_USER_MSG, IOCTL low-level driver command
&msg, pointer to message structure
sizeof(XDS_MSG), length of message
NULL, pointer to output structure
0, length of output structure
&data_length, pointer to number of bytes returned
NULL);

XDS_MSG msg;
typedef struct{
UCHAR board_number; the board number
char msg[32]; the ASCII text of message, NULL terminated
USHORT augTxRxLen; length of Layer 3 message
UCHAR augTxRxMesg[260]; body of Layer 3 message
}XDS_MSG *PXDS_MSG;

Purpose
This command is used to send messages to the board’s receive message queue. The board is
specified in board_number in the structure msg which corresponds to the board number. The
message is contained in the character array msg, and consists of a NULL terminated character
string.

Returns
The function will return the following codes:

STATUS_SUCCESS success
STATUS_DATA_ERROR timeout or other problem with the board
STATUS_BUFFER_TOO_SMALL insufficient memory allocated in call

Comments
Several library functions use this call when a port may be on hold and an “SBxx” message needs
to be returned to the user in the message receive queue. This is also available to be used by the
user.

 3-20

XDS_GET_BOARD_INFO

BOOL DevIoControl(
hdriver, device handle
(DWORD) XDS_GET_BOARD_INFO, board INFO command
pData, pointer to input structure
sizeof(XDSID), length of input structure
pData, pointer to output structure
sizeof(XDSID), length of output structure
&data_length, pointer to number of bytes returned
NULL);

XDSID info;

typedef struct xdsid {
unsigned char board_number; board number
char id[5]; board type (ID)
char version[5]; firmware version
int number_ports; number of ports
UCHAR pci_device_number; PCI Board device number
UCHAR pci_bus_number; PCI Board bus number
}XDSID, *PXDS_ID, xiID, *pXdsId;

Purpose
This command is used to obtain the ID of a specified board.

Returns
The function will return the following codes:

STATUS_SUCCESS success
STATUS_BUFFER_TOO_SMALL size of data structure passed in is incorrect
STATUS_DATA_ERROR board number used, not valid

Comments
This function returns the board ID, version, and number of “ports” associated with a specified
XDS board.

 3-21

READ_PLX_INT

BOOL DevIoControl(
hdriver, device handle
(DWORD) READ_PLX_INT, read PLX INT command
pData, pointer to input structure
sizeof(XDSINTCSR), length of input structure
pData, pointer to output structure
sizeof(XDSINTCSR), length of output structure
&data_length, pointer to number of bytes returned
NULL);

typedef struct xdsintcsr
{
 char plx_9030; // a char to tell the app if it is a PLX 9030 or other
 char board_number; // board number
 char interrupt_enable1; // byte 1 of the interrupt register
 char interrupt_enable2; // byte 2 of the interrupt register

char interrupt_enable3; // byte 3 of the interrupt register
 char interrupt_enable4; // byte 4 of the interrupt register
} XDSINTCSR, *PXDSINTCSR;

Purpose
This command is used to obtain the ID of a specified board.

Returns
The function will return the following codes:

STATUS_SUCCESS success
STATUS_BUFFER_TOO_SMALL size of data structure passed in is incorrect
STATUS_DATA_ERROR board number used, not valid

Comments
This function returns the PLX interrupt register value for a specified XDS board.

MVIP-90 Software
Interface Description

 4A-2

This page was intentionally left blank.

 4A-3

MVIP-90 Software Standard
The MVIP-90 Software Standard provides a uniform interface for MVIP boards.
The standard specifies a set of commands and responses for controlling switching
and system clocks. Vendor specific commands may be added to this set as
necessary as long as these commands conform to the rules of the specification.
These commands may be necessary to control board functions that are outside of
the scope of the MVIP-90 Standard.

Windows NT/2000/XP Implementation
The specific implementation for Windows NT, Windows 2000, and Windows XP
is as a dynamic link library (DLL). The library must export a single entry point
called SwDevIOCtl(). This DLL may perform hardware I/O operations directly or
may serve as the interface to a Windows NT/2000/XP device driver. For the XDS
MVIP driver, the latter method is used using the driver described in the previous
section.
The DLL function declaration is:

INT SWDEVIOCTL(INT device_number, INT cmd, INT* p)

The application interface to the DLL is:

module_handle = LoadLibrary(DLL_name);
mvipIOCtl = GetProcAddress(module_handle, “SWDEVIOCTL”);
rc = mvipIOCtl(device_number, cmd, &p);

where:
(HINSTANCE) module_handle is the Windows NT reference to the DLL module.
(FARPROC) mvipIOCtl is the Windows NT reference to the DLL entry point
function
(INT) device_number is a specific switch block number
(INT) cmd is the command code represented
(INT *) p is the command’s parameter, usually a pointer to a structure.
(INT) rc is the MVIP error code.

For the XDS MVIP Driver, the device_number will correspond to the SW1 setting
of an ISA board or PCI device number of the board for which the command is
being issued. The DLL is named XDSMV90.DLL.

 4A-4

Parameters
Parameters for the various commands are usually passed in a structure. The ioctl
call contains a pointer to this structure. Because of differences between
commands, the parameter structure varies from command to command. These
structures are documented in the command reference sections.

Error Codes
Windows NT does not return error codes directly from DeviceIoControl. Rather
TRUE or FALSE are returned and the GetLastError function is used to determine
what error occurred. The DLL is responsible for extracting this information and
translating it in an appropriate manner. Error codes returned by the DLL fall into
three categories: general device errors, parameter value errors, and switching
related errors. Code 0, which is SUCCESS, and codes 200 through 229 are
specified as part of the MVIP-90 Standard. Other codes, above a certain number,
are available for vendor specific use. The error codes are listed in a table in the
“MVIP-Related Error Codes” chapter.

XDS MVIP Driver Command Set
The XDS MVIP Driver implements all of the mandatory commands in the MVIP-
90 Standard. In addition, XDS specific commands are included for controlling the
XDS MVIP Multi-Chassis Board, the XDS Switch Matrix Board, and the XDS
MVIP Line Interface Boards (DID, E&M, Ground Start, Loop Start and Station
Boards). These commands are grouped in four subsets described in the following
sections: Generic XDS Commands, MVIP Commands, Multi-Chassis and Switch
Matrix Commands, and Line Interface Commands. The command codes are listed
in a table at the end of this document.

 4A-5

Generic Commands
These are commands that work with all XDS boards. Included in this set are
commands to reset the boards, request board identification information, enable
messages from the board and set the encoding format of audio signals to A-Law or
Mu-Law. In addition, there are commands to send native mode messages to the
boards and to receive messages from the board.

MVIP-90 Commands
This is the set of mandatory commands specified in the MVIP-90 Standard. These
commands are for controlling the clocks and switching as well as diagnostics. The
exact implementation of these commands may vary depending on the board type.

Multi-Chassis & Switch Matrix Commands
Included in this set of commands are the commands to control the MC1 Multi-
Chassis Interface bus and the clocks associated with it. In addition, there is a
command to implement conferencing on both the Multi-Chassis and Switch Matrix
Board. Also, there are commands to access the DSP resources on the Switch
Matrix and to configure the MVIP interface on that board.

Line Board Commands
These commands are used to control the analog line interface circuits on the XDS
MVIP DID, E&M, Ground Start, Loop Start and Station Boards as well as B-
channel control of the XDS MVIP Basic Rate ISDN Boards. Included are
commands to configure these ports and to seize and release the lines associated
with them. There are also commands to send and receive DTMF signals, send call
progress signals and generate hook-flashes. Commands specific to the Station
board can generate ringing and control the message waiting indicator.

 4A-6

This page was intentionally left blank.

MVIP-90 Software
Command Reference

 4B-2

This page was intentionally left blank.

 4B-3

CONFIG_CLOCK

command: CONFIG_CLOCK
device number: the device handle for the XDS board to receive the command
parameters: &clock_param

struct clock_param { a structure specifying the clock mode
byte clock; specifies the clock circuit operating mode

0x00 - clock reference comes from MVIP bus /FS
0x01 - clock reference comes from the MVIP bus SEC8K
0x02 - clock reference comes from on board oscillator
0x80 - clock reference comes from a network connection

byte sec8K; specifies whether this device drives the MVIP bus SEC8K line
0x01 - SEC8K not driven
0x02 - SEC8K driven by on board oscillator
0x80 - SEC8K is driven by clock of network connection

int network; specifies which network connection is the source of the 8KHz
reference timing for either the master clock or the SEC8K line

}

Applicable Boards
The XDS Switch Matrix, DID, E&M, Ground Start, Loop Start, and Station Boards.

Purpose
This function is used to set the clock mode for a board.

Returns
SUCCESS
MVIP_MISSING_PARAMETERS
MVIP_INVALID_CLOCK_PARM
MVIP_INVALID_PARAMETER
XDS_NO_BOARD
XDS_NO_RESPONSE
XDS_INVALID_BOARD

Message Sent
“SCx” for the Switch Matrix and Line boards where x is the clock mode

Response
None

Comments
For line boards, the clock modes available correspond to the modes 0-2 for the clock parameters,

 4B-4

there is no network clock connection. The SEC8K output is not separately controllable. The
clock modes for the Multi-Chassis board are much more complex as there are interactions with
the MC1 bus. Therefore, the clocks for both the MVIP and MC1 busses are configured using the
MC1_CONFIG_CLOCK command.

Note that the clock modes sent to the Switch Matrix board in the “SC” message do not match the
mode in the clock parameter. The following codes are used in the message:

0 - no clock to or from the MVIP bus, the Matrix Board is the Master clock
1 - Matrix Board provides clock to the MVIP bus
2x - APIB highway x provides the master clock (network is clock master)
3 - MVIP bus is the master clock

 4B-5

DUMP_SWITCH

command: DUMP_SWITCH
device number: the device handle for the XDS board to receive the command
parameters: &dump_parms

struct dump_parms { a structure to contain the return information
int size; size of the structure in bytes
int minorsw; specifies the switch component to be read
int stream; specifies the input and output stream numbers
int timeslot; specifies the timeslot, typically, 0-31
int cmhi; receives the contents of the connection memory HI byte
int cmlo; receives the contents of the connection memory LO byte
int data; receives the contents of the data memory read
}

Applicable Boards
XDS Multi-Chassis, DID, E&M, Ground Start, Loop Start, & Station boards. This function is
not supported by the XDS Switch Matrix board.

Purpose
This command retrieves the contents of a switch component within an MVIP switch block. In
general, this is hardware specific. This information is useful for diagnostic purposes.

Returns
SUCCESS
MVIP_INVALID_STREAM
MVIP_INVALID_TIMESLOT
XDS_NO_BOARD
XDS_NO_RESPONSE
XDS_INVALID_BOARD

Message Sent
“QDsstt” for XDS MVIP Line boards where ss is the stream and tt is the timeslot
“QDfsstt” for XDS MVIP Multi-Chassis boards where f is the minor switch block, ss is the
stream and tt is the timeslot.

Response
None

 4B-6

Comments
The MVIP line boards have a single minor switch block. Streams supported are 0x00-0x11. The
information returned for streams 0x00-0x07 will be identical to that for streams 0x08-0x0F.
Stream 0x10 is used to connect to the analog ports and stream 0x11 is used to connect to the
DSP. The values cmhi, cmlo, and data are read from registers in the FMIC chip on the board.
The MVIP multi-chassis board has three minor switch blocks. The first two of these form the
MC1 connection. The third block is used for MVIP to MVIP connections and conferencing.
The streams will be between 0x00 and 0x13 with the first 16 mapping into the MVIP bus and
streams 0x10-0x13 being used for the connections to either the MC1 bus or the conferencing
chips. The MC1 streams actually consist of two streams running at 4.096 MHz rather than four
streams at 2.048, but for purposes of addressing the FMIC, the timeslots on the two streams are
interleaved.
Information is returned from the board in a message of type 16, sub-type 4. The contents of the
connection memory can be determined from the message which is returned in the string. This
message takes the form:

“QDssttwwwpp” for MVIP line boards and “QDfssttwwwpp” for the Multi-Chassis board

where f is the minor switch block, sstt is the stream and timeslot, www is the 12 bits
corresponding to the connection memory high and low bytes encoded as hexadecimal and pp is
the data encoded as hexadecimal.

 4B-7

QUERY_OUTPUT

command: QUERY_OUTPUT
device number: the device handle for the XDS board to receive the command
parameters: &output_parms

struct output_parms {
int output_stream; specifies the output stream number
int output_timeslot; specifies the output timeslot
int mode; specifies the output mode, 0 - disabled, 1 - pattern mode

2 - connect mode
int input_stream; receives the input stream number if in connect mode
int input_timeslot receives the input timeslot if in connect mode
int message receives pattern data if in pattern mode
};

Applicable Boards
All XDS MVIP Line boards and the XDS MVIP Multi-Chassis Board. A variant is available for
the XDS Switch Matrix Board.

Purpose
This command retrieves the mode of a specific switch block output and any data associated with
its mode.

Returns
SUCCESS
MVIP_INVALID_STREAM
MVIP_INVALID_TIMESLOT
MVIP_INVALID_MODE
MVIP_MISSING_PARAMETERS
MVIP_INVALID_PARAMETER
XDS_NO_BOARD
XDS_NO_RESPONSE

Message Sent
None

Response
None

 4B-8

Comments
For all the XDS MVIP boards, this command interrogates tables to obtain the information. For
MVIP streams, a single table is kept for all boards. For local streams including conferences and
the MC1 bus, the driver checks the relevant table to return information on whether a timeslot is
active or not, and what timeslot is the input or pattern is being output.

 4B-9

QUERY_SWITCH_CAPS

command: QUERY_SWITCH_CAPS
device number: the device handle for the XDS board to receive the command
parameters: &capabilities_parms

struct capabilities_parms {
int size; specifies the size of the structure in bytes
int revision; receives the revision level of the device driver multiplied by 100
int domain; receives the domain of the switch block
int routing; receives switch block’s half duplex routing capabilities
int blocking; receives switch block’s possible blocking
int networks; receives the number of network streams
int channels[]; an array receiving the number of channels for each network stream
}

Applicable Boards
All XDS MVIP boards

Purpose
This command returns information about the switch and its capabilities.

Returns
SUCCESS
XDS_NO_BOARD
XDS_NO_RESPONSE

Message Sent
None

Response
None

Comments
This command causes information to be returned in the structure that tells the application about
the switching capabilities of the board. Note that the information is hard coded into the driver
and is not returned by the board.
It is possible for the size of the structure to be smaller than is needed to pass back information
about all of the network connections. If this is the case, then only as much information as there
is space for will be returned in the structure.

 4B-10

RESET_SWITCH

command: RESET_SWITCH
device number: the device handle for the XDS board to receive the command
parameters: none

Applicable Boards
All XDS boards

Purpose
This function can be used to put a board in a known, initialized state. All ports are released, all
connections are broken, and all resources are freed. Outputs to the MVIP bus are disabled. This
command does not change the clock mode of the board.

Returns
SUCCESS
XDS_NO_BOARD
XDS_NO_RESPONSE

Message Sent
“RA”

Response
The Line Boards and Multi-Chassis boards respond with a message of type 2, subtype 1. The
Switch Matrix Board makes no response.

Comments
This function should be used for all XDS boards when starting an application to put the boards in
a known state. All connections are dropped and all resources are freed. The clock mode of the
board is not altered by this command.

 4B-11

SAMPLE_INPUT

command: SAMPLE_INPUT
device number: the device handle for the XDS board to receive the command
parameters: &sample_parms

struct sample_parms {
int input_stream; specifies the switch block input stream number
int input_timeslot; specifies the switch block input timeslot
int input_sample; receives the byte currently asserted on the switch block input
};

Applicable Boards
XDS MVIP Line Boards and the XDS MVIP Multi-Chassis Board.

Purpose
This command retrieves the currently asserted byte on a switch block input.

Returns
SUCCESS
MVIP_MISSING_PARAMETERS
MVIP_INVALID_TIMESLOT
MVIP_INVALID_STREAM
MVIP_INVALID_PARAMETER
XDS_NO_BOARD
XDS_NO_RESPONSE
XDS_INVALID_BOARD

Message Sent
“QSsstt”

Response
None
Comments
This command causes the board to read the data memory of the FMIC chip to find the value
asserted. In the case of the Multi-Chassis board, the board uses FMIC 2 to read the information
if the stream is less than 0x13. Streams 0x10-0x13 are the local streams used by FMIC 2 to
connect to the conference chips. If the stream number is greater than or equal to 0x14 the board
will look for a connection on the MC1 bus for that stream and timeslot. If there is no such
connection, then a value of 0xFF will be returned as the sample value. The Switch Matrix Board
does not have an FMIC and does not support this command.

SET_OUTPUT

 4B-12

command: SET_OUTPUT
device number: the device handle for the XDS board to receive the command
parameters: &output_parms

struct output_parms {
int output_stream; specifies the switch block’s output stream
int output_timeslot; specifies the switch block’s output timeslot
int mode; specifies the mode in which to place the switch output

0x00 = disable_mode
0x01 = pattern_mode
0x02 = connect_mode

int input_stream; specifies the input stream in the connect mode
int input_timeslot; specifies the input timeslot in the connect mode
int message; specifies the pattern value to assert in the pattern mode
} ;

Applicable Boards
All XDS MVIP Line boards, the XDS MVIP Multi-Chassis Board, and the XDS Switch Matrix
Board (the Switch Matrix Board does not have pattern output capability)

Purpose
This command is used to make and break connections, to disable a switch block output, or
optionally, to continuously output a fixed pattern on a switch block output.

Returns
SUCCESS
MVIP_MISSING_PARAMETERS
MVIP_INVALID_PARAMETER
MVIP_INVALID_TIMESLOT
MVIP_INVALID_STREAM
MVIP_INVALID_MODE
XDS_NO_BOARD
XDS_NO_RESPONSE

 4B-13

Message Sent
“MOssttiiiimpp” for Line boards
“SOssttiiiimpp” for the Multi-chassis board
where sstt is the output stream and timeslot, iiii is the input stream and timeslot, m is the mode
and pp is the pattern value
“CLxxxyyy” for the Switch Matrix board in the connect mode
“CDxxx” for the Switch Matrix board in the disable mode where xxx is the output stream and
timeslot and yyy is the input stream and timeslot

Response
None

Comments
The SET_OUTPUT command can be used to create connections using any of the switch blocks
on the MC1 Multi-Chassis board. Streams 0x00-0x0F are the MVIP streams. Streams 0x10-
0x13 are the local streams used to connect to the conferencing hardware. Streams 0x14-0x2B
are the MC1 streams. Note, that to conference, additional commands must be issued to the
board. A maximum of four streams may be used for transmitting to the MC1 bus. The messages
to the board reflect this in that only streams numbered 0x14-0x17 are used. The library makes a
translation from the range 0x14-0x2B to this range.

For the XDS Line boards, the SET_OUTPUT command controls the FMIC. It does not control
either the seize function or the CODEC function of each port. To create a connection, an
XDS_MVIP_CONNECT command must also be issued. The order of these commands is not
important to the functioning of the board. To release a port, the XDS_RLS command must be
used.

As the Switch Matrix board does not use an FMIC as the switch block, the actions of a
SET_OUTPUT are approximated with the listen and disconnect messages to the board. There is
no pattern capability on the Switch Matrix board. The DLL translates the streams in the
SET_OUTPUT command to the appropriate values for the CL and CD commands used by the
board. MVIP streams 0x0-0xF will map to streams 8-F on the board depending on the
parameters sent to the XDS_MX_SET_DIRECTION command. MVIP streams 0x10-0x17
become 0-7 on the board. Streams 0-6 refer to the APIB connectors. Stream 7 is the PEB
connector. Stream 6 may also be used to connect to the on-board DSPs.

 4B-14

SET_TRACE

command: SET_TRACE
device number: the device handle for the XDS board to receive the command
parameters: &trace_parms

struct trace_params {
int code;
int (*printf)(const char *,...)
} ;

Applicable Boards
Not supported

Purpose
This is an optional diagnostic command that is not supported by either the library or the boards.

Returns
MVIP_INVALID_COMMAND

Message Sent
none

Response
None

Comments
This command is not supported by the XDS driver.

 4B-15

SET_VERIFY

command: SET_VERIFY
device number: the device handle for the XDS board to receive the command
parameters: &verify

int verify; Specifies whether to enable or disable verification, 0x0 disables

verification, a non-zero value enables verification

Applicable Boards
All XDS MVIP Boards

Purpose
This command enables or disables command-by command verification of all switch operations.
If verification is enabled, low-level switch I/O operations are verified and the error
MVIP_SWITCH_VERIFY_ERROR is returned if an internal switch error is detected.

Returns
SUCCESS
MVIP_MISSING_PARAMETERS
MVIP_INVALID_PARAMETER
XDS_NO_BOARD
XDS_NO_RESPONSE

Message Sent
“SVv” for the XDS MVIP Line Boards and the XDS MVIP Multi-Chassis Board
“AE” or “AD” for the Switch Matrix Board

Response
The boards will respond with a message of type 2, subtype 3 with the msg_str equal to the
message enabling the verify. No response is generated for disabling the verify.

Comments
All XDS MVIP boards will echo any commands when the verify is enabled. Commands will be
returned preceded by an ‘A’. Because the command message must be parsed before the
verification message is sent, a period of several tens of milliseconds may elapse between the
time a command is issued and a verification message is returned. Verification is disabled by
default.

 4B-16

TRISTATE_SWITCH

command: TRISTATE_SWITCH
device number: the device handle for the XDS board to receive the command
parameters: &tristate

int tristate; a value specifying whether to enable or disable the switch block

if the value is 0x1 the block is tri-stated, if 0x0, the block is
enabled

Applicable Boards
All XDS MVIP boards.

Purpose
This command enables or disables the entire switch block with respect to the MVIP bus. This
command can be used to tri-state the output buffers to the MVIP bus for diagnostic purposes.
This command has no effect on local or network busses.

Returns
SUCCESS
MVIP_MISSING_PARAMETERS
MVIP_INVALID_PARAMETER
XDS_NO_BOARD
XDS_NO_RESPONSE

Message Sent
“MTD” to disable output to the MVIP bus (tristate enabled)
“MTE” to enable output to the MVIP bus (tristate disabled)
For the Switch Matrix, a set direction message “SDXXXXXXXX” is sent to tristate the board.
Appropriate direction information is sent to disable the tristate.

Response
None

Comments
On the MVIP Line boards and Multi-Chassis Boards, the tristate function is carried out using the
FMIC chips. On the Switch Matrix Board, the tristate function is accomplished by using the
direction control logic. The driver keeps a table containing the direction information for use by
this command.

MVIP-95 Software
Interface Description

 5A-2

This page was intentionally left blank.

 5A-3

MVIP-95 BUS Software Standard
The MVIP-95 Software Standard provides a uniform interface for MVIP, H.100,
and H.110 boards. The standard specifies a set of commands and responses for
controlling switching and system clocks. Vendor specific commands may be
added to this set as necessary as long as these commands conform to the rules of
the specification. These commands may be necessary to control board functions
that are outside of the scope of the MVIP-95 Standard.

Windows NT/2000/XP Implementation
The specific implementation for Windows NT, Windows 2000, and Windows XP
is as a dynamic link library (DLL). The library must export a single entry point
called SwDevIOCtl(). This DLL may perform hardware I/O operations directly or
may serve as the interface to a Windows NT/2000/XP device driver. For the XDS
driver, the latter method is used using the driver described in the previous section.
The DLL function declaration is:

INT SWDEVIOCTL(INT device_number, INT cmd, INT* p)

The application interface to the DLL is:

module_handle = LoadLibrary(DLL_name);
swdevioctl = GetProcAddress(module_handle, “SWDEVIOCTL”);
rc = swdevioctl(device_number, cmd, &p);

where:
(HINSTANCE) module_handle is the Windows NT reference to the DLL module.
(FARPROC)swdevioctl is the Windows NT reference to the DLL entry point
function
(INT) device_number is a specific switch block number
(INT) cmd is the command code represented
(INT *) p is the command’s parameter, usually a pointer to a structure.
(INT) rc is the error code.

For the XDS Driver, the device_number will correspond to the SW1 setting of an

 5A-4

ISA board or the PCI device number of the board for which the command is being
issued. The DLL is named XDSMV95.DLL.

Parameters
Parameters for the various commands are usually passed in a structure. The ioctl
call contains a pointer to this structure. Because of differences between
commands, the parameter structure varies from command to command. These
structures are documented in the command reference sections.

Error Codes
Windows NT does not return error codes directly from DeviceIoControl. Rather
TRUE or FALSE are returned and the GetLastError function is used to determine
what error occurred. The DLL is responsible for extracting this information and
translating it in an appropriate manner. Error codes returned by the DLL fall into
three categories: general device errors, parameter value errors, and switching
related errors. Code 0, which is SUCCESS, and codes 200 through 229 are
specified as part of the MVIP-95 Standard. Other codes, above a certain number,
are available for vendor specific use. The error codes are listed in a table in the
“MVIP-Related Error Codes” chapter.

XDS MVIP-95 Driver Command Set
The XDS Driver implements all of the mandatory commands in the MVIP-95
Standard. In addition, XDS specific commands are included for controlling the
XDS MVIP Multi-Chassis Boards, the XDS Switch Matrix Board, the XDS MVIP
Line Interface Boards (DID, E&M, Ground Start, Loop Start and Station Boards),
and the XDS BRI Interface Boards. These commands are grouped in four subsets
described in the following sections: Generic XDS Commands, MVIP-95
Commands, Multi-Chassis and Switch Matrix Commands, and Line Interface
Commands. The command codes are listed in a table at the end of this document.

Generic Commands
These are commands that work with all XDS boards. Included in this set are
commands to reset the boards, request board identification information, enable
messages from the board and set the encoding format of audio signals to A-Law or
Mu-Law. In addition, there are commands to send native mode messages to the
boards and to receive messages from the board.

Multi-Chassis & Switch Matrix Commands

 5A-5

Included in this set of commands are the commands to control the MC1 Multi-
Chassis Interface bus and the clocks associated with it. In addition, there is a
command to implement conferencing on both the Multi-Chassis and Switch Matrix
Board. Also, there are commands to access the DSP resources on the Switch
Matrix and to configure the MVIP interface on that board.

Line Board Commands
These commands are used to control the analog line interface circuits on the XDS
MVIP DID, E&M, Ground Start, Loop Start and Station Boards as well as B-
channel control of the XDS MVIP Basic Rate ISDN Boards. Included are
commands to configure these ports and to seize and release the lines associated
with them. There are also commands to send and receive DTMF signals, send call
progress signals and generate hook-flashes. Commands specific to the Station
board can generate ringing and control the message waiting indicator.

 5A-6

This page was intentionally left blank.

MVIP-95 Software
Command Reference

 5B-2

This page was intentionally left blank.

 5B-3

MVIP95_CMD_CONFIG_8KREF_CLOCK

device number: the device handle for the XDS board to receive the command
parameters: &mvip95_config_mc1_8kref_clock_parms

struct mvip95_config_mc1_8kref_clock_parms {
int size; specifies size of the struct used
int clock_source; specifies the clock reference from
int network which network, if clock_source == MVIP95_SOURCE_NETWORK
};

Applicable Boards
XDS MC1 Multi-Chassis Boards

Purpose
This command configures the source of the MC1 8KREF signal. The source can be an internal
oscillator, the MVIP bus clocks, or no source.

Returns
MVIP95_SUCCESS
MVIP95_ERR_INVALID_CLOCK_PARM

Message Sent
“SCxx” where xx is the clock mode

Response
None

Comments
Because of the complexities of the clocking modes on the Multi-Chassis boards it is possible for
other commands to put a board in a conflicting mode, such as SEC8K or 8KREF. If this is the
case, the board will return a “SUCCESS” message and the clock mode will remain unchanged.

 5B-4

MVIP95_CMD_CONFIG_BOARD_CLOCK

device number: the device handle for the XDS board to receive the command
parameters:

&mvip95_config_mc1_board_clock_parms (MC1 Boards)
struct mvip95_config_mc1_board_clock_parms {
int size; specifies size of the struct used
int clock_type; indicates the MVIP standard clocking used on the board
int clock_source; specifies where the clock reference originates
int network; the device source for the clock signals (if source ==network)
int mc1_clock_mode; specifies the board’s control of the MC1 clocks
int auto_fall_back; specifies whether the board is to automatically switch to the fall

 back mode and become a slave to alternate MC1 clock
int fall_back_occurred; specifies whether the board has detected the primary master clock
 signal has become unreliable and fallen back to a secondary source

&mvip95_config_h100_board_clock_parms (H.100/110 Boards)
struct mvip95_cinfig_h100_board_clock_parms {
int size; specifies size of the struct used
int clock_type; indicates the MVIP standard clocking used on the board
int clock_source; specifies where the clock reference originates
int network; the device source for the clock signals (if source == network)
int mc1_clock_mode; specifies the board’s control of the MC1 clocks
int auto_fall_back; specifies whether the board is to automatically switch to the fall

 back mode and become a slave to alternate MC1 clock
int netref_clock_speed; specifies speed of the NETREF clock signal

&mvip95_config_hmvip_board_clock_parms (All other MVIP Boards)
struct mvip95_config_hmvip_board_clock_parms {
int size; specifies size of the struct used
int clock_type; indicates the MVIP standard clocking used on the board
int clock_source; specifies where the clock reference originates
int network; the device source for the clock signals (if source == network)

Applicable Boards
All XDS boards.

 5B-5

Purpose
This command configures selected board to all of the MVIP95 requirements specified.

Returns
MVIP95_SUCCESS
MVIP95_ERR_INVALID_CLOCK_PARM
MVIP95_ERR_INVALID_PARAMETER

Message Sent
MC1: “SCxx”- where xx is the clock mode
H.100/110: “SCmsabb(c)”- where m is the clock mode, s is the sub-mode, a is the

CT_NETREF, bb will be the reference frequency for submodes 1&2, bb will be
the local network for submodes 3 – 5, and c will select the reference frequency of
the CT_NETREF fallback source for sub-modes 4 & 5.

Response
None

Comments
Because of the complexities of the clocking modes on the Multi-Chassis boards it is possible for
other commands to put a board in a conflicting mode, such as SEC8K or 8KREF. If this is the
case, the board will return a “SUCCESS” message and the clock mode will remain unchanged.

 5B-6

MVIP95_CMD_CONFIG_LOCAL_STREAM

device number: the device handle for the XDS board to receive the command
parameters: &mvip95_config_local_stream_parms

struct mvip95_config_local_stream_parms {
int size; specifies size of the struct used
int local_stream; the selected stream on local bus
int device_id; device type on stream and timeslot selected
int parameter_id; data item for configuration information obtained
int *buffer; timeslot-specific information from driver
}

Applicable Boards
No XDS boards

Purpose
This command returns information about the switch and its capabilities.

Returns
MVIP95_SUCCESS
MVIP95_ERR_INVALID_PARM
MVIP95_ERR_NOT_CONFIGURABLE

Message Sent
None

Response
None

Comments
This command is not compatible with XDS boards, and will return
MVIP95_ERR_NOT_CONFIGURABLE.

 5B-7

MVIP95_CMD_CONFIG_LOCAL_TIMESLOT

device number: the device handle for the XDS board to receive the command
parameters: &mvip95_config_local_timeslot_parms

struct mvip95_config_local_timeslot_parms {
int size; specifies size of the struct used
int local_stream; the selected stream on local bus
int local_timeslot; the selected timeslot on local bus
int device_id; device type on stream and timeslot selected
int parameter_id; data item for configuration information obtained
int *buffer; timeslot-specific information from driver
}

Applicable Boards
No XDS boards

Purpose
This command returns information about the switch and its capabilities.

Returns
MVIP95_SUCCESS
MVIP95_ERR_INVALID_PARM
MVIP95_ERR_NOT_CONFIGURABLE

Message Sent
None

Response
None

Comments
This command is not compatible with XDS boards, and will return
MVIP95_ERR_NOT_CONFIGURABLE.

 5B-8

MVIP95_CMD_CONFIG_NETREF_CLOCK

device number: the device handle for the XDS board to receive the command
parameters: &mvip95_config_netref_clock_parms

struct mvip95_config_netref_clock_parms {
int size; specifies size of the struct used
int network which network
int netref_clock_mode board’s control of secondary network clocks
int netref_clock_speed which network (if clock_source == MVIP95_SOURCE_NETWORK)
};

Applicable Boards
XDS H.100 and H.110 boards.

Purpose
This command defines the secondary network reference clocks.

Returns
MVIP95_SUCCESS
MVIP95_ERR_INVALID_CLOCK_PARM
MVIP95_ERR_INVALID_PARAMETER

Message Sent
“SCxx” where xx is the clock mode

Response
None

Comments
Only available clock speed for our boards is 8 KHz.

 5B-9

MVIP95_CMD_CONFIG_SEC8K_CLOCK

device number: the device handle for the XDS board to receive the command
parameters: &mvip95_config_sec8k_clock_parms

struct mc1_sec8k_parms {
int clock_source; specifies the clock reference from:
int network which network if clock_source == MVIP95_SOURCE_NETWORK
};

Applicable Boards
All XDS boards.

Purpose
This command defines the secondary 8KHz - the network device from which SEC8K is
obtained.

Returns
MVIP95_SUCCESS
MVIP95_ERR_INVALID_CLOCK_PARM
MVIP95_ERR_INVALID_PARMAMETER

Message Sent
“SCxx” where xx is the clock mode

Response
None

Comments
Because of the complexities of the clocking modes on the Multi-Chassis boards it is possible for
other commands to put a board in a conflicting mode, such as SEC8K or 8KREF. If this is the
case, the board will return a “SUCCESS” message and the clock mode will remain unchanged.

 5B-10

MVIP95_CMD_CONFIG_STREAM_SPEED

device number: the device handle for the XDS board to receive the command
parameters: &mvip95_config_stream_speed_parms

struct mvip95_query_stream_speed_parms {
int size; specifies size of the struct used
int speed; specifies the speed of the specified stream(s)
int *stream; specifies the stream(s) selected for configuring
};

Applicable Boards
XDS H.100 boards

Purpose
This configures the stream speeds on a CT Bus.

Returns
MVIP95_SUCCESS
MVIP95_ERR_INVALID_SPEED
MVIP95_ERR_INVALID_STREAM
MVIP95_ERR_INVALID_PARMAMETER

Message Sent
“SBabcd” where a, b, c, and d are blocks of 4 streams each on the CT bus.

Response
None

Comments
This command configures the selected streams for the selected speed(s). Only the lower 16
streams are configurable on the CT bus.

 5B-11

MVIP95_CMD_QUERY_BOARD_CLOCK

device number: the device handle for the XDS board to receive the command
parameters:

&mvip95_query_mc1_board_clock_parms (MC1 Boards)
struct mvip95_query_mc1_board_clock_parms {
int size; specifies size of the struct used
int clock_type; indicates the MVIP standard clocking used on the board
int clock_source; specifies where the clock reference originates
int network; the device source for the clock signals (if source == network)
int mc1_clock_mode; specifies the board’s control of the MC1 clocks
int auto_fall_back; specifies whether the board is to automatically switch to the fall
 back mode and become a slave to alternate MC1 clock
int fall_back_occurred; specifies whether the board has detected the primary master clock
 signal has become unreliable and fallen back to a secondary source
}
&mvip95_query_h100_board_clock_parms (H.100/110 Boards)
struct mvip95_query_h100_board_clock_parms {
int size; specifies size of the struct used
int clock_type; indicates the MVIP standard clocking used on the board
int clock_source; specifies where the clock reference originates
int network; the device source for the clock signals (if source == network)
int mc1_clock_mode; specifies the board’s control of the MC1 clocks
int auto_fall_back; specifies whether the board is to automatically switch to the fall
 back mode and become a slave to alternate MC1 clock
int fall_back_occurred; specifies whether the board has detected the primary master clock
 signal has become unreliable and fallen back to a secondary source
int h100_a_clock_status; reports quality/status of the ‘A’ clock master signal
int h100_b_clock_status; reports quality/status of the ‘B’ clock master signal
int netref_a_clock_status; reports quality/status of the NETREF_A clock secondary signal
int netref_b_clock_status; reports quality/status of the NETREF_B clock secondary signal
}
&mvip95_query_hmvip_board_clock_parms (All other MVIP Boards)
struct mvip95_query_hmvip_board_clock_parms {
int size; specifies size of the struct used
int clock_type; indicates the MVIP standard clocking used on the board
int clock_source; specifies where the clock reference originates
int network; the device source for the clock signals (if source == network)
}

Applicable Boards
All XDS MVIP boards

 5B-12

Purpose
This command returns information about the board’s clock modes.

Returns
MVIP95_SUCCESS

Message Sent
None

Response
None

Comments
This command causes information to be returned in the structure that tells the application about
the current clock mode of the specified board. If config_8kref_clock and/or
config_sec8k_clock are called before this function, this function will return “SUCCESS” and do
nothing.

 5B-13

MVIP95_CMD_QUERY_BOARD_INFO

device number: the device handle for the XDS board to receive the command
parameters: &mvip95_query_board_info_parms

struct mvip95_query_board_info_parms {
int size; specifies size of the struct used
int description[80]; receives the device driver description
int revision[16]; receives the revision level of device driver
int date[12]; release date of the device driver
int vendor[80]; receives the name of the vendor of the device driver
int serial_number[80]; receives the serial number of a specified board
int board_id; receives the vendor-specific identity number
int base_port_address receives the physical I/O address of board
}

Applicable Boards
All XDS MVIP boards

Purpose
This command returns information about the board.

Returns
MVIP95_SUCCESS

Message Sent
None

Response
None

Comments
This command causes information to be returned in the structure that tells the application about
the selected hardware. The serial_number field will always be “N/A”, no XDS boards have
electronically embedded serial numbers. The date will always be 0000/00/00, again, no XDS
boards have embedded dates. The base_port_address will always be 0xFFFFF, because of
limitations of reading the hardware.

 5B-14

MVIP95_CMD_QUERY_DRIVER_INFO

device number: the device handle for the XDS board to receive the command
parameters: &mvip95_query_driver_info_parms

struct mvip95_query_driver_info_parms {
int size; specifies size of the struct used
int description[80]; receives the device driver description
int revision[16]; receives the revision level of device driver
int date[12]; release date of the device driver
int vendor[80]; receives the name of the vendor of the device driver
}

Applicable Boards
All XDS MVIP boards

Purpose
This command returns information about the driver.

Returns
MVIP95_SUCCESS

Message Sent
None

Response
None

Comments
This command causes information to be returned in the structure that tells the application about
the device driver. The date will always be 0000/00/00, no XDS boards have electronically
embedded dates.

 5B-15

MVIP95_CMD_QUERY_LOCAL_STREAM

device number: the device handle for the XDS board to receive the command
parameters: &mvip95_query_local_stream_parms

struct mvip95_query_local_stream_parms {
int size; specifies size of the struct used
int local_stream; the selected stream on local bus
int device_id; device type on stream and timeslot selected
int parameter_id; data item for configuration information obtained
int *buffer; timeslot-specific information from driver
}

Applicable Boards
No XDS boards

Purpose
This command is not supported by XDS boards.

Returns
MVIP95_SUCCESS
MVIP95_ERR_NOT_CONFIGURABLE

Message Sent
None

Response
None

Comments
This command is not compatible with XDS boards, and will always return
MVIP95_ERR_NOT_CONFIGURABLE.

 5B-16

MVIP95_CMD_QUERY_LOCAL_TIMESLOT

device number: the device handle for the XDS board to receive the command
parameters: &mvip95_query_local_timeslot_parms

struct mvip95_query_local_timeslot_parms {
int size; specifies size of the struct used
int local_stream; the selected stream on local bus
int local_timeslot; the selected timeslot on local bus
int device_id; device type on stream and timeslot selected
int parameter_id; data item for configuration information obtained
int *buffer; timeslot-specific information from driver
}

Applicable Boards
No XDS boards

Purpose
This command is not supported by XDS boards.

Returns
MVIP95_SUCCESS
MVIP95_ERR_NOT_CONFIGURABLE

Message Sent
None

Response
None

Comments
This command is not compatible with XDS boards, and will always return
MVIP95_ERR_NOT_CONFIGURABLE.

 5B-17

MVIP95_CMD_QUERY_OUTPUT

device number: the device handle for the XDS board to receive the command
parameters: &mvip95_query_output_parms

struct mvip95_query_output_parms {
int size; specifies size of the struct used
MVIP95_OUTDESC *output; specifies the switch block outputs
};

Applicable Boards
All XDS boards.

Purpose
This command retrieves output information on a terminus.

Returns
MVIP95_SUCCESS
MVIP95_ERR_INVALID_STREAM
MVIP95_ERR_INVALID_TIMESLOT
MVIP95_ERR_INVALID_MODE
MVIP95_ERR_INVALID_PARAMETER

Message Sent
None

Response
None

Comments
For all the XDS MVIP boards, this command interrogates tables to obtain the information. For
MVIP streams, a single table is kept for all boards. For local streams including conferences and
the MC1 bus, the driver checks the relevant table to return information on whether a timeslot is
active or not, and what timeslot is the input or pattern is being output.

 5B-18

MVIP95_CMD_QUERY_STREAM_SPEED

device number: the device handle for the XDS board to receive the command
parameters: &mvip95_query_stream_speed_parms

struct mvip95_query_stream_speed_parms {
int size; specifies size of the struct used
int speed; specifies the speed of the specified stream
int *stream; specifies the stream(s) selected for query
};

Applicable Boards
XDS H.100 boards.

Purpose
This command retrieves the speed of a specific stream.

Returns
MVIP95_SUCCESS
MVIP95_ERR_INVALID_SPEED
MVIP95_ERR_INVALID_PARM

Message Sent
None

Response
None

Comments
This command reads dual-ported RAM for query information. Because of hardware limitations,
streams are configured in blocks of four each (0-3, 4-7, 8-11, 12-15). So, this function will
return the stream speed of each block, not an actual stream.

Example
When querying speed for stream 0, it will specify the speed for the first block (0-3). In addition,
the MVIP95 specification limits the “speed” parameter to only one value, so when querying
blocks that may have different speeds, this function may be called several times.

 5B-19

MVIP95_CMD_QUERY_SWITCH_CAPS

device number: the device handle for the XDS board to receive the command
parameters: &mvip95_query_switch_caps_parms

struct mvip95_query_switch_caps_parms {
int size; specifies size of the struct used
int dvr_ revision; receives the revision level of the device driver (multiplied by 100)
int domain; receives the domain of the switch block
int routing; receives switch block’s half duplex routing capabilities
int blocking; receives switch block’s possible blocking
int sw_standard; the MVIP software standard being used
int sw_std_revision; the revision of the MVIP software standard being used
int hw_standard; the MVIP standard being used
int hw_std_revision; the revision of the driver being used (multiplied by 100)
MVIP95_LOCAL_DEVICE_DESC
*local_devs; a pointer receiving the number of timeslots

 and device type of each local stream
}

Applicable Boards
All XDS MVIP boards

Purpose
This command returns information about the switch and its capabilities.

Returns
MVIP95_SUCCESS

Message Sent
None

Response
None

Comments
This command causes information to be returned in the structure that tells the application about
the switching capabilities of the board. Note that the information is hard coded into the driver
and is not returned by the board.

 5B-20

MVIP95_CMD_RESET_SWITCH

device number: the device handle for the XDS board to receive the command
parameters: none

Applicable Boards
All XDS boards

Purpose
This function can be used to put a board in a known, initialized state. All ports are released, all
connections are broken, and all resources are freed. Outputs to the MVIP bus are disabled. This
command does not change the clock mode of the board.

Returns
MVIP95_SUCCESS

Message Sent
“RA”

Response
All XDS boards respond with a message of type 2, subtype 1. The Switch Matrix Board makes
no response.

Comments
This function should be used for all XDS boards when starting an application to put the boards in
a known state. All connections are dropped and all resources are freed. The clock mode of the
board is not altered by this command.

 5B-21

MVIP95_CMD_SAMPLE_INPUT

device number: the device handle for the XDS board to receive the command
parameters: &mvip95_sample_input_parms

struct mvip95_sample_input_parms {
int size; specifies size of the struct used
MVIP95_INDESC *input; specifies the switch block inputs
};

Applicable Boards
All XDS Legacy/ISA boards, except the Switch Matrix board.

Purpose
This command retrieves the currently asserted byte on a switch block input.

Returns
MVIP95_SUCCESS
MVIP95_ERR_INVALID_TIMESLOT
MVIP95_ERR_INVALID_STREAM
MVIP95_ERR_INVALID_PARAMETER

Message Sent
“QIsstt”

Response
None

Comments
This command causes the board to read the data memory of the FMIC chip to find the value
asserted. In the case of the Multi-Chassis board, the board uses FMIC 2 to read the information
if the stream is less than 0x13. Streams 0x10-0x13 are the local streams used by FMIC 2 to
connect to the conference chips. If the stream number is greater than or equal to 0x14 the board
will look for a connection on the MC1 bus for that stream and timeslot. If there is no such
connection, then a value of 0xFF will be returned as the sample value. The Switch Matrix Board
does not have an FMIC and does not support this command.

 5B-22

MVIP95_CMD_SET_OUTPUT

device number: the device handle for the XDS board to receive the command
parameters: &mvip95_set_output_parms

struct mvip95_set_output_parms {
int size; specifies size of the struct used
MVIP95_OUTDESC *output; specifies the switch block outputs
};

Applicable Boards
All XDS boards.

Purpose
This command is used to make and break connections, to disable a switch block output, or
optionally, to continuously output a fixed pattern on a switch block output.

Returns
MVIP95_SUCCESS
MVIP95_ERR_INVALID_TIMESLOT
MVIP95_ERR_INVALID_STREAM
MVIP95_ERR_INVALID_PARAMETER

Message Sent
“MOssttiiiimpp” for Line boards and BRI boards
“SOssttiiiimpp” for the Multi-chassis board
where sstt is the output stream and timeslot, iiii is the input stream and timeslot, m is the mode
and pp is the pattern value
“CLxxxyyy” for the Switch Matrix board in the connect mode
“CDxxx” for the Switch Matrix board in the disable mode where xxx is the output stream and
timeslot and yyy is the input stream and timeslot

Response
None

 5B-23

Comments
The MVIP95_CMD_SET_OUTPUT command can be used to create connections using any of
the switch blocks on the MC1 Multi-Chassis board. Streams 0x00-0x0F are the MVIP streams.
Streams 0x10-0x13 are the local streams used to connect to the conferencing hardware. Streams
0x14-0x2B are the MC1 streams. Note, that to conference, additional commands must be issued
to the board. A maximum of four streams may be used for transmitting to the MC1 bus. The
messages to the board reflect this in that only streams numbered 0x14-0x17 are used. The
library makes a translation from the range 0x14-0x2B to this range.

For the XDS Line boards, the MVIP95_CMD_SET_OUTPUT command controls the FMIC. It
does not control either the seize function or the CODEC function of each port. To create a
connection, an XDS_MVIP_CONNECT command must also be issued. The order of these
commands is not important to the functioning of the board. To release a port, the XDS_RLS
command must be used.

As the Switch Matrix board does not use an FMIC as the switch block, the actions of a
MVIP95_CMD_SET_OUTPUT are approximated with the listen and disconnect messages to
the board. There is no pattern capability on the Switch Matrix board. The DLL translates the
streams in the MVIP95_CMD_SET_OUTPUT command to the appropriate values for the CL
and CD commands used by the board. MVIP streams 0x0-0xF will map to streams 8-F on the
board depending on the parameters sent to the XDS_MX_SET_DIRECTION command. MVIP
streams 0x10-0x17 become 0-7 on the board. Streams 0-6 refer to the APIB connectors. Stream
7 is the PEB connector. Stream 6 may also be used to connect to the on-board DSPs.

 5B-24

This page was intentionally left blank.

CT-BUS Software
Interface Description

 6A-2

This page was intentionally left blank.

 6A-3

CT-BUS BUS Software Standard
The CT-BUS Software Standard provides a uniform interface for MVIP, H.100,
and H.110 boards. The standard specifies a set of commands and responses for
controlling switching and system clocks. Vendor specific commands may be
added to this set as necessary as long as these commands conform to the rules of
the specification. These commands may be necessary to control board functions
that are outside of the scope of the CT-BUS Standard.

Windows NT/2000/XP Implementation
The specific implementation for Windows NT, Windows 2000, and Windows XP
is as a dynamic link library (DLL). The library must export a single entry point
called SwDevIOCtl(). This DLL may perform hardware I/O operations directly or
may serve as the interface to a Windows NT/2000/XP device driver. For the XDS
driver, the latter method is used using the driver described in the previous section.
The DLL function declaration is:

INT SWDEVIOCTL(INT device_number, INT cmd, INT* p)

The application interface to the DLL is:

module_handle = LoadLibrary(DLL_name);
swdevioctl = GetProcAddress(module_handle, “SWDEVIOCTL”);
rc = swdevioctl(device_number, cmd, &p);

where:
(HINSTANCE) module_handle is the Windows NT reference to the DLL module.
(FARPROC)swdevioctl is the Windows NT reference to the DLL entry point
function
(INT) device_number is a specific switch block number
(INT) cmd is the command code represented
(INT *) p is the command’s parameter, usually a pointer to a structure.
(INT) rc is the error code.

For the XDS Driver, the device_number will correspond to the SW1 setting on an
ISA board or the PCI device number of the board for which the command is being
issued. The DLL is named XdsCtBus.DLL.

Parameters

 6A-4

Parameters for the various commands are usually passed in a structure. The ioctl
call contains a pointer to this structure. Because of differences between
commands, the parameter structure varies from command to command. These
structures are documented in the command reference sections.

Error Codes
Windows NT does not return error codes directly from DeviceIoControl. Rather
TRUE or FALSE are returned and the GetLastError function is used to determine
what error occurred. The DLL is responsible for extracting this information and
translating it in an appropriate manner. Error codes returned by the DLL fall into
three categories: general device errors, parameter value errors, and switching
related errors. Code 0, which is SUCCESS, and codes 200 through 229 are
specified as part of the CT-BUS Standard. Other codes, above a certain number,
are available for vendor specific use. The error codes are listed in a table in the
“MVIP-Related Error Codes” chapter.

XDS CT-BUS Driver Command Set
The XDS Driver implements all of the mandatory commands in the CT-BUS
Standard. In addition, XDS specific commands are included for controlling the
XDS MVIP Multi-Chassis Boards, the XDS Switch Matrix Board, the XDS MVIP
Line Interface Boards (DID, E&M, Ground Start, Loop Start and Station Boards),
and the XDS BRI Interface Boards. These commands are grouped in four subsets
described in the following sections: Generic XDS Commands, CT-BUS
Commands, Multi-Chassis and Switch Matrix Commands, and Line Interface
Commands. The command codes are listed in a table at the end of this document.

 6A-5

Generic Commands
These are commands that work with all XDS boards. Included in this set are
commands to reset the boards, request board identification information, enable
messages from the board and set the encoding format of audio signals to A-Law or
Mu-Law. In addition, there are commands to send native mode messages to the
boards and to receive messages from the board.

Multi-Chassis & Switch Matrix Commands
Included in this set of commands are the commands to control the MC1 Multi-
Chassis Interface bus and the clocks associated with it. In addition, there is a
command to implement conferencing on both the Multi-Chassis and Switch Matrix
Board. Also, there are commands to access the DSP resources on the Switch
Matrix and to configure the MVIP interface on that board.

Line Board Commands
These commands are used to control the analog line interface circuits on the XDS
MVIP DID, E&M, Ground Start, Loop Start and Station Boards as well as B-
channel control of the XDS MVIP Basic Rate ISDN Boards. Included are
commands to configure these ports and to seize and release the lines associated
with them. There are also commands to send and receive DTMF signals, send call
progress signals and generate hook-flashes. Commands specific to the Station
board can generate ringing and control the message waiting indicator.

 6A-6

This page was intentionally left blank.

CT-BUS Software
Command Reference

 6B-2

This page was intentionally left blank.

 6B-3

CTBUS_CMD_CONFIG_8KREF_CLOCK

command: CTBUS_CMD_CONFIG_8KREF_CLOCK
device number: the device handle for the XDS board to receive the command
parameters: &ctbus_config_mc1_8kref_clock_parms

struct ctbus_config_mc1_8kref_clock_parms {
int size; specifies size of struct used
int clock_source; specifies the clock reference from:
int network which network, if clock_source == CTBUS_SOURCE_NETWORK
};

Applicable Boards
XDS MC1 Multi-Chassis Boards

Purpose
This command configures the source of the MC1 8KREF signal. The source can be an internal
oscillator, the MVIP bus clocks, or no source.

Returns
CTBUS_SUCCESS
CTBUS_ERR_INVALID_CLOCK_PARM

Message Sent
“SCxx” where xx is the clock mode

Response
None

Comments
Because of the complexities of the clocking modes on the Multi-Chassis boards it is possible for
other commands to put a board in a conflicting mode, such as SEC8K or 8KREF. If this is the
case, the board will return a “SUCCESS” message and the clock mode will remain unchanged.

 6B-4

CTBUS_CMD_CONFIG_BOARD_CLOCK

command: CTBUS_CMD_CONFIG_BOARD_CLOCK
device number: the device handle for the XDS board to receive the command
parameters:
&ctbus_config_h100_board_clock_parms (H.100/110 Boards)
struct ctbus_cinfig_h100_board_clock_parms {
int size; specifies size of struct used
int clock_type; indicates the MVIP standard clocking used on the board
int clock_source; specifies where the clock reference originates
int network; the device source for the clock signals (if source == network)
int h100_clock_mode; specifies the board’s control of the H.100/H.110 clocks
int auto_fall_back; specifies whether the board is to automatically switch to the fall

 back mode and become a slave to alternate MC1 clock
int netref_clock_speed; specifies speed of the NETREF clock signal
int fall_back_clock_source; specifies the source of the clock when fall back occurs
int fall_back_network; specifies the on-board source for the network fall back clock

Applicable Boards
All XDS boards.

Purpose
This command configures selected board to all of the CTBUS requirements specified.

Returns
CTBUS_SUCCESS
CTBUS_ERR_INVALID_PARM
CTBUS_ERR_INVALID_PARAMETER

Message Sent
MC1: “SCxx”- where xx is the clock mode
H.100/110: “SCmsabb(c)”- where m is the clock mode, s is the sub-mode, a is the

CT_NETREF, bb will be the reference frequency for submodes 1&2, bb will be
the local network for submodes 3 – 5, and c will select the reference frequency of
the CT_NETREF fallback source for sub-modes 4 & 5.

 6B-5

Response
None

Comments
Because of the complexities of the clocking modes on the Multi-Chassis boards it is possible for
other commands to put a board in a conflicting mode, such as SEC8K or 8KREF. If this is the
case, the board will return a “SUCCESS” message and the clock mode will remain unchanged.

 6B-6

CTBUS_CMD_CONFIG_LOCAL_STREAM

command: CTBUS_CMD_CONFIG_LOCAL_STREAM
device number: the device handle for the XDS board to receive the command
parameters: &ctbus_config_local_stream_parms

struct ctbus_config_local_stream_parms {
int size; specifies size of struct used
int local_stream; the selected stream on local bus
int device_id; device type on stream and timeslot selected
int parameter_id; data item for configuration information obtained
int *buffer; timeslot-specific information from driver
}

Applicable Boards
No XDS boards

Purpose
This configures the stream speeds on a CT Bus.

Returns
CTBUS_SUCCESS
CTBUS_ERR_INVALID_PARM
CTBUS_ERR_NOT_CONFIGURABLE

Message Sent
None

Response
None

Comments
This command is not compatible with XDS boards, and will return
CTBUS_ERR_NOT_CONFIGURABLE.

 6B-7

CTBUS_CMD_CONFIG_LOCAL_TIMESLOT

command: CTBUS_CMD_CONFIG_LOCAL_TIMESLOT
device number: the device handle for the XDS board to receive the command
parameters: &ctbus_config_local_timeslot_parms

struct ctbus_config_local_timeslot_parms {
int size; specifies size of struct used
int local_stream; the selected stream on local bus
int local_timeslot; the selected timeslot on local bus
int device_id; device type on stream and timeslot selected
int parameter_id; data item for configuration information obtained
int *buffer; timeslot-specific information from driver
}

Applicable Boards
No XDS boards

Purpose
This command returns information about the switch and its capabilities.

Returns
CTBUS_SUCCESS
CTBUS_ERR_INVALID_PARM
CTBUS_ERR_NOT_CONFIGURABLE

Message Sent
None

Response
None

Comments
This command is not compatible with XDS boards, and will return
CTBUS_ERR_NOT_CONFIGURABLE.

 6B-8

CTBUS_CMD_CONFIG_NETREF_CLOCK

command: CTBUS_CMD_CONFIG_NETREF_CLOCK
device number: the device handle for the XDS board to receive the command
parameters: &ctbus_config_netref_clock_parms

struct ctbus_config_netref_clock_parms {
int size; specifies size of struct used
int network which network
int netref_clock_mode board’s control of secondary network clocks
int netref_clock_speed which network (if clock_source == CTBUS_SOURCE_NETWORK)
};

Applicable Boards
XDS H.100 and H.110 boards.

Purpose
This command defines the secondary network reference clocks.

Returns
CTBUS_SUCCESS
CTBUS_ERR_INVALID_CLOCK_PARM
CTBUS_ERR_INVALID_PARAMETER

Message Sent
“SCxx” where xx is the clock mode

Response
None

Comments
Only available clock speed for our boards is 8 KHz.

 6B-9

CTBUS_CMD_CONFIG_SEC8K_CLOCK

command: CTBUS_CMD_CONFIG_SEC8K_CLOCK
device number: the device handle for the XDS board to receive the command
parameters: &ctbus_config_sec8k_clock_parms

struct mc1_sec8k_parms {
int clock_source; specifies the clock reference from:
int network which network (if clock_source == CTBUS_SOURCE_NETWORK)
};

Applicable Boards
All XDS boards.

Purpose
This command defines the secondary 8KHz - the network device from which SEC8K is
obtained.

Returns
CTBUS_SUCCESS
CTBUS_ERR_INVALID_CLOCK_PARM
CTBUS_ERR_INVALID_PARMAMETER

Message Sent
“SCxx” where xx is the clock mode

Response
None

Comments
Because of the complexities of the clocking modes on the Multi-Chassis boards it is possible for
other commands to put a board in a conflicting mode, such as SEC8K or 8KREF. If this is the
case, the board will return a “SUCCESS” message and the clock mode will remain unchanged.

 6B-10

CTBUS_CMD_CONFIG_STREAM_SPEED

command: CTBUS_CMD_CONFIG_STREAM_SPEED
device number: the device handle for the XDS board to receive the command
parameters: &ctbus_config_stream_speed_parms

struct ctbus_query_stream_speed_parms {
int size; specifies size of struct used
int speed; specifies the speed of the specified stream
int *stream; specifies the stream(s) selected to be configured
};

Applicable Boards
XDS H.100 boards

Purpose
This configures the stream speeds on a CT Bus.

Returns
CTBUS_SUCCESS
CTBUS_ERR_INVALID_SPEED
CTBUS_ERR_INVALID_STREAM
CTBUS_ERR_INVALID_PARMAMETER

Message Sent
“SBabcd” where a, b, c, and d are blocks of 4 streams each on the CT bus.

Response
None

Comments
This command configures the selected streams for the selected speed(s). Only the lower 16
streams are configurable on the CT bus.

 6B-11

CTBUS_CMD_QUERY_BOARD_CLOCK

command: CTBUS_CMD_QUERY_BOARD_CLOCK
device number: the device handle for the XDS board to receive the command
parameters:

&ctbus_query_h100_board_clock_parms (H.100/110 Boards)
struct ctbus_query_h100_board_clock_parms {
int size; specifies the size of the struct used
int clock_type; indicates the MVIP standard clocking used on the board
int clock_source; specifies where the clock reference originates
int network; the device source for the clock signals (if source == network)
int h100_clock_mode; specifies the board’s control of the H100 clocks
int auto_fall_back; specifies whether the board is to automatically switch to the fall
 back mode and become a slave to alternate MC1 clock
int fall_back_occurred; specifies whether the board has detected the primary master clock

 signal has become unreliable and fallen back to a secondary source
int h100_a_clock_status; reports quality/status of the ‘A’ clock master signal
int h100_b_clock_status; reports quality/status of the ‘B’ clock master signal
int netref_1_clock_status; reports quality/status of the NETREF_1 clock secondary signal
int netref_2_clock_status; reports quality/status of the NETREF_2 clock secondary signal

Applicable Boards
All XDS MVIP boards

Purpose
This command returns the clock modes.

Returns
CTBUS_SUCCESS

Message Sent
None

Response
None

Comments
This command causes information to be returned in the structure that tells the application about
the current clock mode of the specified board. If config_8kref_clock and/or config_sec8k_clock
are called before this function, this function will return “SUCCESS” and do nothing.

 6B-12

CTBUS_CMD_QUERY_BOARD_INFO

command: CTBUS_CMD_QUERY_BOARD_INFO
device number: the device handle for the XDS board to receive the command
parameters: &ctbus_query_board_info_parms

struct ctbus_query_board_info_parms {
int size; specifies the size of the struct used
int description[80]; receives the device driver description
int revision[16]; receives the revision level of device driver
int date[12]; release date of the device driver
int vendor[80]; receives the name of the vendor of the device driver
int serial_number[80]; receives the serial number of a specified board
int board_id; receives the vendor-specific identity number
int base_port_address receives the physical I/O address of board
}

Applicable Boards
All XDS MVIP boards

Purpose
This command returns information about the board.

Returns
CTBUS_SUCCESS

Message Sent
None

Response
None

Comments
This command causes information to be returned in the structure that tells the application about
the selected hardware. The serial_number field will always be “N/A”, no XDS boards have
electronically embedded serial numbers. The date will always be 0000/00/00, again, no XDS
boards have embedded dates. The base_port_address will always be 0xFFFFF, because of
limitations of reading the hardware.

 6B-13

CTBUS_CMD_QUERY_DRIVER_INFO

command: CTBUS_CMD_QUERY_DRIVER_INFO
device number: the device handle for the XDS board to receive the command
parameters: &ctbus_query_driver_info_parms

struct ctbus_query_driver_info_parms {
int size; specifies the size of the struct used
int description[80]; receives the device driver description
int revision[16]; receives the revision level of device driver
int date[12]; release date of the device driver
int vendor[80]; receives the name of the vendor of the device driver
}

Applicable Boards
All XDS MVIP boards

Purpose
This command returns information about the driver.

Returns
CTBUS_SUCCESS

Message Sent
None

Response
None

Comments
This command causes information to be returned in the structure that tells the application about
the device driver. The date will always be 0000/00/00, no XDS boards have electronically
embedded dates.

 6B-14

CTBUS_CMD_QUERY_LOCAL_STREAM

command: CTBUS_CMD_QUERY_LOCAL_STREAM
device number: the device handle for the XDS board to receive the command
parameters: &ctbus_query_local_stream_parms

struct ctbus_query_local_stream_parms {
int size; specifies the size of the struct used
int local_stream; the selected stream on local bus
int device_id; device type on stream and timeslot selected
int parameter_id; data item for configuration information obtained
int *buffer; timeslot-specific information from driver
}

Applicable Boards
No XDS boards

Purpose
This command is not supported by XDS boards.

Returns
CTBUS_SUCCESS
CTBUS_ERR_NOT_CONFIGURABLE

Message Sent
None

Response
None

Comments
This command is not compatible with XDS boards, and will always return
CTBUS_ERR_NOT_CONFIGURABLE.

 6B-15

CTBUS_CMD_QUERY_LOCAL_TIMESLOT

command: CTBUS_CMD_QUERY_LOCAL_TIMESLOT
device number: the device handle for the XDS board to receive the command
parameters: &ctbus_query_local_timeslot_parms

struct ctbus_query_local_timeslot_parms {
int size; specifies the size of the struct used
int local_stream; the selected stream on local bus
int local_timeslot; the selected timeslot on local bus
int device_id; device type on stream and timeslot selected
int parameter_id; data item for configuration information obtained
int *buffer; timeslot-specific information from driver
}

Applicable Boards
No XDS boards

Purpose
This command is not supported by XDS boards.

Returns
CTBUS_SUCCESS
CTBUS_ERR_NOT_CONFIGURABLE

Message Sent
None

Response
None

Comments
This command is not compatible with XDS boards, and will always return
CTBUS_ERR_NOT_CONFIGURABLE.

 6B-16

CTBUS_CMD_QUERY_OUTPUT

command: CTBUS_CMD_QUERY_OUTPUT
device number: the device handle for the XDS board to receive the command
parameters: &ctbus_query_output_parms

struct ctbus_query_output_parms {
int size; specifies the size of the struct used
CTBUS_OUTDESC *output; specifies the switch block outputs
};

Applicable Boards
All XDS boards.

Purpose
This command retrieves output information on a terminus.

Returns
CTBUS_SUCCESS
CTBUS_ERR_INVALID_STREAM
CTBUS_ERR_INVALID_TIMESLOT
CTBUS_ERR_INVALID_MODE
CTBUS_ERR_INVALID_PARAMETER

Message Sent
None

Response
None

Comments
For all the XDS MVIP boards, this command interrogates tables to obtain the information. For
MVIP streams, a single table is kept for all boards. For local streams including conferences and
the MC1 bus, the driver checks the relevant table to return information on whether a timeslot is
active or not, and what timeslot is the input or pattern is being output.

 6B-17

CTBUS_CMD_QUERY_STREAM_SPEED

command: CTBUS_CMD_QUERY_STREAM_SPEED
device number: the device handle for the XDS board to receive the command
parameters: &ctbus_query_stream_speed_parms

struct ctbus_query_stream_speed_parms {
int size; specifies the size of the struct used
int speed; specifies the speed of the specified stream
int *stream; specifies the stream(s) selected for query
};

Applicable Boards
XDS H.100 boards

Purpose
This command retrieves the speed of a specific stream.

Returns
CTBUS_SUCCESS
CTBUS_ERR_INVALID_SPEED
CTBUS_ERR_INVALID_PARM

Message Sent
None

Response
None

Comments
This command reads dual-ported RAM for query information. Because of hardware limitations,
streams are configured in blocks of four each (0-3, 4-7, 8-11, 12-15). So, this function will
return the stream speed of each block, not an actual stream.

Example
When querying speed for stream 0, it will specify the speed for the first block (0-3). In addition,
the MVIP95 specification limits the “speed” parameter to only one value, so when querying
blocks that may have different speeds, this function may be called several times.

 6B-18

CTBUS_CMD_QUERY_SWITCH_CAPS

command: CTBUS_CMD_QUERY_SWITCH_CAPS
device number: the device handle for the XDS board to receive the command
parameters: &ctbus_query_switch_caps_parms

struct ctbus_query_switch_caps_parms {
int size; specifies the size of the struct used
int dvr_revision; receives the revision level of the device driver (multiplied by 100)
int domain; receives the domain of the switch block
int routing; receives switch block’s half duplex routing capabilities
int blocking; receives switch block’s possible blocking
int sw_standard; the MVIP software standard being used
int sw_std_revision; the revision of the MVIP software standard being used
int hw_standard; the MVIP standard being used
int hw_std_revision; the revision of the driver being used (multiplied by 100)
CTBUS_LOCAL_DEVICE_DESC
*local_devs; a pointer receiving the number of timeslots

 and device type of each local stream
}

Applicable Boards
All XDS MVIP boards

Purpose
This command returns information about the switch and its capabilities.

Returns
CTBUS_SUCCESS

Message Sent
None

Response
None

Comments
This command causes information to be returned in the structure that tells the application about
the switching capabilities of the board. Note that the information is hard coded into the driver
and is not returned by the board.

 6B-19

 CTBUS_CMD_RESET_SWITCH

command: CTBUS_CMD_RESET_SWITCH
device number: the device handle for the XDS board to receive the command
parameters: none

Applicable Boards
All XDS boards

Purpose
This function can be used to put a board in a known, initialized state. All ports are released, all
connections are broken, and all resources are freed. Outputs to the MVIP bus are disabled. This
command does not change the clock mode of the board.

Returns
CTBUS_SUCCESS

Message Sent
“RA”

Response
All XDS boards respond with a message of type 2 subtype 1. The Switch Matrix Board makes
no response.

Comments
This function should be used for all XDS boards when starting an application to put the boards in
a known state. All connections are dropped and all resources are freed. The clock mode of the
board is not altered by this command.

 6B-20

CTBUS_CMD_SAMPLE_INPUT

command: CTBUS_CMD_SAMPLE_INPUT
device number: the device handle for the XDS board to receive the command
parameters: &ctbus_sample_input_parms

struct ctbus_sample_input_parms {
int size; specifies the size of the struct used
CTBUS_INDESC *input; specifies the switch block inputs
};

Applicable Boards
All XDS Legacy/ISA boards, except the Switch Matrix board.

Purpose
This command retrieves the currently asserted byte on a switch block input.

Returns
CTBUS_SUCCESS
CTBUS_ERR_INVALID_TIMESLOT
CTBUS_ERR_INVALID_STREAM
CTBUS_ERR_INVALID_PARAMETER

Message Sent
“QIsstt”

Response
None

Comments
This command causes the board to read the data memory of the FMIC chip to find the value
asserted. In the case of the Multi-Chassis board, the board uses FMIC 2 to read the information
if the stream is less than 0x13. Streams 0x10-0x13 are the local streams used by FMIC 2 to
connect to the conference chips. If the stream number is greater than or equal to 0x14 the board
will look for a connection on the MC1 bus for that stream and timeslot. If there is no such
connection, then a value of 0xFF will be returned as the sample value. The Switch Matrix Board
does not have an FMIC and does not support this command.

 6B-21

CTBUS_CMD_SET_OUTPUT

command: CTBUS_CMD_SET_OUTPUT
device number: the device handle for the XDS board to receive the command
parameters: &ctbus_set_output_parms

struct ctbus_set_output_parms {
int size; specifies the size of the struct used
CTBUS_OUTDESC *output; specifies the switch block outputs
} ;

Applicable Boards
All XDS boards.

Purpose
This command is used to make and break connections, to disable a switch block output, or
optionally, to continuously output a fixed pattern on a switch block output.

Returns
CTBUS_SUCCESS
CTBUS_ERR_INVALID_TIMESLOT
CTBUS_ERR_INVALID_STREAM
CTBUS_ERR_INVALID_PARAMETER

Message Sent
“MOssttiiiimpp” for Line boards and BRI boards
“SOssttiiiimpp” for the Multi-chassis board
where sstt is the output stream and timeslot, iiii is the input stream and timeslot, m is the mode
and pp is the pattern value
“CLxxxyyy” for the Switch Matrix board in the connect mode
“CDxxx” for the Switch Matrix board in the disable mode where xxx is the output stream and
timeslot and yyy is the input stream and timeslot

Response
None

 6B-22

Comments
The CTBUS_CMD_SET_OUTPUT command can be used to create connections using any of
the switch blocks on the MC1 Multi-Chassis board. Streams 0x00-0x0F are the MVIP streams.
Streams 0x10-0x13 are the local streams used to connect to the conferencing hardware. Streams
0x14-0x2B are the MC1 streams. Note, that to conference, additional commands must be issued
to the board. A maximum of four streams may be used for transmitting to the MC1 bus. The
messages to the board reflect this in that only streams numbered 0x14-0x17 are used. The
library makes a translation from the range 0x14-0x2B to this range.

For the XDS Line boards, the CTBUS_CMD_SET_OUTPUT command controls the FMIC. It
does not control either the seize function or the CODEC function of each port. To create a
connection, an XDS_MVIP_CONNECT command must also be issued. The order of these
commands is not important to the functioning of the board. To release a port, the XDS_RLS
command must be used.

As the Switch Matrix board does not use an FMIC as the switch block, the actions of a
CTBUS_CMD_SET_OUTPUT are approximated with the listen and disconnect messages to
the board. There is no pattern capability on the Switch Matrix board. The DLL translates the
streams in the CTBUS_CMD_SET_OUTPUT command to the appropriate values for the CL
and CD commands used by the board. MVIP streams 0x0-0xF will map to streams 8-F on the
board depending on the parameters sent to the XDS_MX_SET_DIRECTION command. MVIP
streams 0x10-0x17 become 0-7 on the board. Streams 0-6 refer to the APIB connectors. Stream
7 is the PEB connector. Stream 6 may also be used to connect to the on-board DSPs.

MVIP-Related & XDS
Function Command Codes

 A-2

This page was intentionally left blank.

 A-3

MVIP-90 Command Codes

Standard MVIP-90 Commands
RESET_SWITCH 0x00 resets switch block to known state
QUERY_SWITCH_CAPS 0x01 returns switch block capabilities
SET_OUTPUT 0x10 makes & breaks switch connections
QUERY_OUTPUT 0x11 returns state of a switch output
SAMPLE_INPUT 0x12 returns data of switch input

CONFIG_CLOCK 0x20 configures MVIP clocking options
MC1_CONFIG_CLOCK 0x21 configures the MC1 left & right clocks
MC1_SET_8KREF_CLOCK 0x22 specifies the source of 8KREF
MC1_SET_SEC8K_CLOCK 0x23 specifies the source of SEC8K

DUMP_SWITCH 0x70 returns contents of switch component
SET_TRACE 0x71 enables printing of diagnostic info
TRISTATE_SWITCH 0x72 enables/disables MVIP switch block
SET_VERIFY 0x73 enables verification

MVIP95 Command Codes

MVIP95 Standard Commands
MVIP95_CMD_RESET_SWITCH 0x101 resets switch block to known state
MVIP95_CMD_QUERY_SWITCH_CAPS 0x102 returns switch block capabilities
MVIP95_CMD_SET_OUTPUT 0x103 makes & breaks switch connections
MVIP95_CMD_QUERY_OUTPUT 0x104 returns state of a switch output
MVIP95_CMD_SAMPLE_INPUT 0x105 returns data of switch input
MVIP95_CMD_CONFIG_STREAM_SPEED 0x11A configure speed for HMVIP
 streams
MVIP95_CMD_QUERY_STREAM_SPEED 0x11B query speed for an HMVIP

 stream
MVIP95_CMD_CONFIG_LOCAL_STREAM 0x1A0 configure local device (stream)
MVIP95_CMD_CONFIG_LOCAL_TIMESLOT 0x1A1 configure local device (timeslot)
MVIP95_CMD_QUERY_BOARD_INFO 0x1A2 retrieve information about a board
 being controlled by device driver
MVIP95_CMD_QUERY_DRIVER_INFO 0x1A3 retrieve information about device
 driver
MVIP95_CMD_QUERY_LOCAL_STREAM 0x1A4 retrieve information about local
 device (stream)
MVIP95_CMD_QUERY_LOCAL_TIMESLOT 0x1A5 retrieve information about local

 device (timeslot)

 A-4

MVIP95 Clock Command Codes
MVIP95_CMD_CONFIG_BOARD_CLOCK 0x111 configure MVIP clocks
MVIP95_CMD_CONFIG_SEC8K_CLOCK 0x112 configure secondary 8KHz clock
MVIP95_CMD_CONFIG_NETREF_CLOCK 0x113 configure secondary NETREF clock
MVIP95_CMD_QUERY_BOARD_CLOCK 0x114 retrieve board clocking information
MVIP95_CMD_CONFIG_8KREF_CLOCK 0x122 configure MC1 8KHz clock signal

CT-BUS Command Codes

CT-BUS Standard Commands
CTBUS_CMD_RESET_SWITCH 0x101 resets switch block to known state
CTBUS_CMD_QUERY_SWITCH_CAPS 0x102 returns switch block capabilities
CTBUS_CMD_SET_OUTPUT 0x103 makes & breaks switch connections
CTBUS_CMD_QUERY_OUTPUT 0x104 returns state of a switch output
CTBUS_CMD_SAMPLE_INPUT 0x105 returns data of switch input
CTBUS_CMD_CONFIG_STREAM_SPEED 0x11A configure speed for HMVIP streams
CTBUS_CMD_QUERY_STREAM_SPEED 0x11B query speed for an HMVIP stream
CTBUS_CMD_CONFIG_LOCAL_STREAM 0x1A0 configure local device (stream)
CTBUS_CMD_CONFIG_LOCAL_TIMESLOT 0x1A1 configure local device (timeslot)
CTBUS_CMD_QUERY_BOARD_INFO 0x1A2 retrieve information about a board
 being controlled by device driver
CTBUS_CMD_QUERY_DRIVER_INFO 0x1A3 retrieve information about device
 driver
CTBUS_CMD_QUERY_LOCAL_STREAM 0x1A4 retrieve information about local
 device (stream)
CTBUS_CMD_QUERY_LOCAL_TIMESLOT 0x1A5 retrieve information about local
 device (timeslot)

CT-BUS Clock Commands
CTBUS_CMD_CONFIG_BOARD_CLOCK 0x111 configure MVIP clocks
CTBUS_CMD_CONFIG_SEC8K_CLOCK 0x112 configure secondary 8KHz clock
CTBUS_CMD_CONFIG_NETREF_CLOCK 0x113 configure secondary NETREF clock
CTBUS_CMD_QUERY_BOARD_CLOCK 0x114 retrieve board clocking information
CTBUS_CMD_QUERY_TIMING_REF 0x115 retrieve board timing information
CTBUS_CMD_CONFIG_8KREF_CLOCK 0x122 configure MC1 8KHz clock signal

 A-5

XDS Command Codes
Generic XDS Commands
XDS_RESET_ALL 0x80 issues an “RA” command to board
XDS_ID 0x81 returns board ID & version
XDS_MSG_ON 0x82 enables return messages
XDS_MSG_OFF 0x83 disables return messages
XDS_MSG_SEND 0x84 sends a message to the board
XDS_MSG_RECEIVE 0x85 returns received messages if any
XDS_QUERY_RECEIVE 0x86 returns query response if any
XDS_SET_ENCODING 0x87 sets encoding mode

XDS Multi-Chassis Commands
XDS_MC1_SELECT 0x48 enable MC1 bus transmit streams

Conference Commands
MAKE_CONFERENCE 0x4B control conference resources

XDS Matrix-Board Commands
XDS_MX_SET_DIRECTION 0x50 set MVIP bus direction
XDS_MX_SEND_DTMF 0x52 send DTMF tone string to MVIP bus

XDS Line Board Commands
XDS_MVIP_CONNECT 0x60 seize a port & enable local audio
XDS_RLS 0x61 release a port & disable local audio
XDS_CPTONES 0x62 plays call progress tones to a port
XDS_LISTEN_DTMF 0x63 sets a port to listen for DTMF tones
XDS_SEND_DTMF 0x64 plays a DTMF tone string to a port
XDS_HOOKFLASH 0x65 generates a hookflash on a port
XDS_MWI 0x66 controls MWI for a station port
XDS_RING 0x67 generates ringing on a station port
XDS_SEIZE 0x68 seizes a port if in the idle state
XDS_SET_PROTOCOL 0x69 sets DID protocol for a DID or E&M
XDS_SET_TYPE 0x6A sets port type
XDS_RESET_DSP 0x6B resets the DSP on a line board
XDS_DSP_VERSION 0x6C returns DSP version for a line board
XDS_LINE_STATE 0x6D returns the line state for a port

 A-6

This page was intentionally left blank.

MVIP-Related & XDS
Function Return Codes

 B-2

This page was intentionally left blank.

 B-3

MVIP-90 Return Codes

General Errors
SUCCESS 0 driver successfully completed command
MVIP_INVALID_COMMAND 200 command code is not supported
MVIP_DLL_INVALID_DEVICE 201 switch number passed to device driver DLL

is out of range OS/2 specific
MVIP_DEVICE_ERROR 202 an error was returned by a device driver

called by this device driver
MVIP_NO_RESOURCE 203 an internal device driver resource has been

exhausted
Parameter Errors
MVIP_INVALID_STREAM 210 stream number parameter is out of range
MVIP_INVALID_TIMESLOT 211 timeslot parameter is out of range
MVIP_MISSING_PARAMETER 212 not enough parameters to perform command
MVIP_INVALID_CLOCK_PARM 213 invalid clock configuration parameter(s)
MVIP_INVALID_MODE 216 invalid SET_OUTPUT or

 QUERY_OUTPUT mode
MVIP_INVALID_MINOR_SWITCH 217 invalid switch component in dump_switch
MVIP_INVALID_PARAMETER 218 other invalid parameter

Switch Errors
MVIP_NO_PATH 220 connection cannot be made due to blocking

or other switch limitation
MVIP_SWITCH_VERIFY_ERROR 221 verification of switch operation failed
MVIP_INTERNAL_CONFLICT 222 more than one switch component is in

conflict
MVIP_CONNECTION_NOT_SUPPORTED 223 switch block does not support connection

 B-4

MVIP-95 Return Codes

General Errors
MVIP95_SUCCESS 0 driver successfully completed command
MVIP95_ERR_INVALID_COMMAND 200 command code is not supported
MVIP95_ERR_DLL_INVALID_DEVICE 201 DLL could not find specified device
MVIP95_ERR_DEVICE_ERROR 202 an error was returned by a device driver

called by this device driver
MVIP95_ERR_NO_RESOURCES 204 an internal device driver resource has been

exhausted
Parameter Errors
MVIP95_ERR_INVALID_STREAM 210 stream number parameter is out of range
MVIP95_ERR_INVALID_TIMESLOT 211 timeslot parameter is out of range
MVIP95_ERR_MISSING_PARAMETER 212 not enough parameters to perform command
MVIP95_ERR_INVALID_CLOCK_PARM 213 invalid clock configuration parameter(s)
MVIP95_ERR_INVALID_SPEED 214 speed parameter is out of range
MVIP95_ERR_NOT_CONFIGURABLE 215 device does not support configuration of
 parameters/values requested
MVIP95_ERR_INVALID_MODE 216 invalid SET_OUTPUT or

 QUERY_OUTPUT mode
MVIP95_ERR_INVALID_MINOR_SWITCH 217 invalid switch component in dump_switch
MVIP95_ERR_INVALID_PARAMETER 218 other invalid parameter
MVIP95_ERR_UNSUPPORTED_MODE 224 mode not supported by device driver or the
 hardware specified
Switch Errors
MVIP95_ERR_NO_PATH 220 connection cannot be made due to blocking

or other switch limitation
MVIP95_ERR_SWITCH_ 221 verification of switch operation failed
VERIFY_ERROR
MVIP95_ERR_INTERNAL_CONFLICT 222 more than one switch component is in

conflict
MVIP95_ERR_CONNECTION_ NOT_SUPPORTED

223 switch block does not support connection

 B-5

CT-BUS Return Codes

General Errors
CTBUS_SUCCESS 0 driver successfully completed command
CTBUS_ERR_INVALID_COMMAND 200 command code is not supported
CTBUS_ERR_DLL_INVALID_DEVICE 201 DLL could not find specified device
CTBUS_ERR_DEVICE_ERROR 202 an error was returned by a device driver

called by this device driver
CTBUS_ERR_NO_RESOURCES 204 an internal device driver resource has been

exhausted
Parameter Errors
CTBUS_ERR_INVALID_STREAM 210 stream number parameter is out of range
CTBUS_ERR_INVALID_TIMESLOT 211 timeslot parameter is out of range
CTBUS_ERR_MISSING_PARAMETER 212 not enough parameters to perform command
CTBUS_ERR_INVALID_CLOCK_PARM 213 invalid clock configuration parameter(s)
CTBUS_ERR_INVALID_SPEED 214 speed parameter is out of range
CTBUS_ERR_NOT_CONFIGURABLE 215 device does not support configuration of
 parameters/values requested
CTBUS_ERR_INVALID_MODE 216 invalid SET_OUTPUT or

 QUERY_OUTPUT mode
CTBUS_ERR_INVALID_MINOR_SWITCH 217 invalid switch component in dump_switch
CTBUS_ERR_INVALID_PARAMETER 218 other invalid parameter
CTBUS_ERR_UNSUPPORTED_MODE 224 mode not supported by device driver or the

 hardware specified
Switch Errors
CTBUS_ERR_NO_PATH 220 connection cannot be made due to blocking

or other switch limitation
CTBUS_ERR_SWITCH_ VERIFY_ERROR 221 verification of switch operation failed
CTBUS_ERR_INTERNAL_CONFLICT 222 more than one switch component is in

conflict
CTBUS_ERR_CONNECTION_ 223 switch block does not support connection
NOT_SUPPORTED

 B-6

XDS Return Codes

BRD_ERROR -1 Board Error
ILL_PORT 1 Illegal Port
ILL_SLOT 2 Illegal Timeslot
ILL_ARG 3 Illegal Argument
ILL_HAND 4 Illegal Conference Handle
ILL_ATTEN 5 Illegal Attenuation
ILL_THRESHOLD 6 Illegal Threshold
WRONG_QUERY 7 Wrong Query
WRONG_BOARD 8 Wrong Board
NO_UPDATE 9 No Update
ILL_CCA 10 Illegal Conference Handle
ILL_MODE 11 Illegal "mode" value
ILL_TYPE 12 Illegal "type" (BRI) value
ILL_FEATURE 13 Illegal "feature" (BRI) value
ILL_CAUSE 14 Illegal "cause" (BRI) value
ILL_REFERENCE 15 Illegal "reference" (BRI) value
ILL_PROGRESS 16 Illegal "progress" (BRI) value
ILL_SIGNAL 17 Illegal "signal" (BRI) value
ILL_THRES 18 Illegal threshold value
ILL_PORT_TYPE 19 Illegal Port Type

 B-7

XDS IOCTL Return Codes

SUCCESS 0 returned successfully

UNIX
XDS_MSG_AVAILABLE 0 message available
XDS_BOARD_NOT_PRESENT 1 XDS board not present
XDS_NO_MSG 1 no messages on queue
XDS_BOARD_NOT_RESPONDING 2 XDS board is not responding
XDS_DPRAM_BAD_WRITE 2 attempt to write to first 256

 bytes of boards DPRAM
XDS_DPRAM_READ_OFF 2 attempt to read at an offset before

 the beginning of the board
XDS_DPRAM_WRITE_LIMIT 3 attempt to write beyond the 2k limit
XDS_DPRAM_READ_LIMIT 3 attempt to read beyond the 2k limit
XDS_BAD_COMMAND 4 non supported ioctl command

Windows NT/2000
XDS_ERR_IOCTL_XMT 256 XMT command failed
XDS_ERR_IOCTL_RCV 257 RCV command failed
XDS_ERR_IOCTL_RCV_QUERY 258 RCV_QUERY command failed
XDS_ERR_IOCTL_WRITE_DPRAM 259 WRITE_DPRAM command fail
XDS_ERR_IOCTL_READ_DPRAM 260 READ_DPRAM command
XDS_ERR_IOCTL_INVALID_COMMAND 261 Invalid ioctl() command
XDS_ERR_IOCTL_RESET 262 XDS_RESET error
XDS_ERR_GET_BOARD_INFO 263 XDS_GET_BOARD_INFO error
XDS_ERR_GET_BUS_DEVICE_NUM 264 XDS_GET_BUS_DEVICE_NUM error
XDS_ERR_IOCTL_SLEEP 265 XDS_SLEEP error
XDS_ERR_IOCTL_RESUME 266 XDS_RESUME error
XDS_ERR_QUEUE_USER_MSG 267 XDS_QUEUE_USER_MSG error
XDS_ERR_IOCTRL_BUSY 268 board transmit flag is not clear (error)
XDS_ERR_IOCTRL_SYSTEM 269 Windows system timer not available (error)

 B-8

This page was intentionally left blank.

	Contents.pdf
	1 cPCI Driver Package Software Installation and Removal
	2 Driver Package Programs and Source Code
	3 XDS Windows 2000/XP Driver IOCTL Description
	4A XDS MVIP-90 Software Interface Description
	4B XDS MVIP-90 Command Reference
	5A XDS MVIP-95 Software Interface Description
	5B XDS MVIP-95 Command Reference
	6A XDS CT-BUS Software Interface Description
	6B XDS CT-BUS Command Reference

	Software.pdf
	Driver Command Line Test
	Signaling Mechanism Test Utilities
	A Graphical User Interface, Sig_Util2, has been provided for
	DLL Command Line Tests
	XdsPciRes
	XDS_BRI_Config
	MC-3 Fiber Ring Integrity Test
	The DLL provides high-level native XDS and MVIP-compliant co
	The DLL provides high-level native XDS and MVIP-compliant co
	The DLL provides high-level native XDS and MVIP-compliant co
	6.0 Source Code And Directory Structure
	Binary file directory -
	Source code directories -

	Ioctl.pdf
	XDS_GET_BUS_DEVICE_NUM - obtain the PCI bus and slot number
	XDS PCI board
	XDS_QUEUE_USER_MSG - place an ASCII message on the receive m
	queue
	XMT
	RCV
	WRITE_DPRAM
	XDS_QUEUE_USER_MSG
	STATUS_BUFFER_TOO_SMALL size of data structure passed in i
	STATUS_DATA_ERROR board number used, not valid

	Mvip90Desc.pdf
	MVIP-90 Software
	Interface Description
	MVIP-90 Software Standard

	Mvip90func.pdf
	MVIP-90 Software
	CONFIG_CLOCK
	DUMP_SWITCH
	QUERY_SWITCH_CAPS
	RESET_SWITCH
	SAMPLE_INPUT
	SET_OUTPUT
	SET_TRACE
	TRISTATE_SWITCH

	Mvip95Desc.pdf
	MVIP-95 Software
	Interface Description

	Mvip95func.pdf
	MVIP-95 Software
	MVIP95_CMD_CONFIG_BOARD_CLOCK
	MVIP95_CMD_CONFIG_LOCAL_STREAM
	MVIP95_CMD_CONFIG_LOCAL_TIMESLOT
	MVIP95_CMD_CONFIG_NETREF_CLOCK
	MVIP95_CMD_CONFIG_SEC8K_CLOCK
	MVIP95_CMD_CONFIG_STREAM_SPEED
	MVIP95_CMD_QUERY_BOARD_CLOCK
	MVIP95_CMD_QUERY_BOARD_INFO
	MVIP95_CMD_QUERY_DRIVER_INFO
	MVIP95_CMD_QUERY_LOCAL_STREAM
	MVIP95_CMD_QUERY_LOCAL_TIMESLOT
	MVIP95_CMD_QUERY_OUTPUT
	MVIP95_CMD_QUERY_STREAM_SPEED
	MVIP95_CMD_QUERY_SWITCH_CAPS
	MVIP95_CMD_RESET_SWITCH
	MVIP95_CMD_SAMPLE_INPUT
	MVIP95_CMD_SET_OUTPUT

	MvipCtDesc.pdf
	CT-BUS Software
	Interface Description

	MvipCTfunc.pdf
	CT-BUS Software
	CTBUS_CMD_CONFIG_BOARD_CLOCK
	CTBUS_CMD_CONFIG_LOCAL_TIMESLOT
	CTBUS_CMD_CONFIG_NETREF_CLOCK
	CTBUS_CMD_CONFIG_SEC8K_CLOCK
	CTBUS_CMD_CONFIG_STREAM_SPEED
	CTBUS_CMD_QUERY_BOARD_CLOCK
	CTBUS_CMD_QUERY_BOARD_INFO
	CTBUS_CMD_QUERY_DRIVER_INFO
	CTBUS_CMD_QUERY_LOCAL_STREAM
	CTBUS_CMD_QUERY_LOCAL_TIMESLOT
	CTBUS_CMD_QUERY_OUTPUT
	CTBUS_CMD_QUERY_SWITCH_CAPS
	CTBUS_CMD_RESET_SWITCH
	CTBUS_CMD_SAMPLE_INPUT
	CTBUS_CMD_SET_OUTPUT
	“CLxxxyyy” for the Switch Matrix board in the connect mode

	CommandCodes.pdf
	MVIP95 Command Codes
	CT-BUS Command Codes
	XDS Command Codes

	ReturnCodes.pdf
	CT-BUS Return Codes
	UNIX
	Windows NT/2000

	Ioctl.pdf
	XDS_GET_BUS_DEVICE_NUM	- obtain the PCI bus and slot number for a given
	XDS PCI board
	XDS_QUEUE_USER_MSG	- place an ASCII message on the receive message
	queue
	XMT
	RCV
	WRITE_DPRAM
	XDS_QUEUE_USER_MSG
	
	
	
	
	
	STATUS_BUFFER_TOO_SMALL 		size of data structure passed in is incorrect
	STATUS_DATA_ERROR			board number used, not valid
	STATUS_BUFFER_TOO_SMALL 		size of data structure passed in is incorrect
	STATUS_DATA_ERROR			board number used, not valid

