GIUTETCO

Infinity Series H.100 E&M Board

TECHNICAL MANUAL

Documentation Revision 1.4 20 March 2019

Copyright © 2019 American Tel-A-Systems, Inc. dba Amtelco All Rights Reserved 257M033D This manual applies to the H.100 PCI and PCI Express E&M Interfaces with ARM processor and Zarlink ZL50031 telephony switch. Earlier versions of this board are described in the manual 257M014.

Table of Contents

1.0	Introduction		
	1.1	Features and Capabilities1.1.1The E&M Interface1.1.2DSP Functions1.1.3Transceiver Support1.1.4The H.100 Bus1.1.5Clock Modes1.1.6Message Passing1.1.7Flash EAROM for Firmware1.1.8EEPROM for Configuration InformationHow to Use This Manual	1-1 1-2 1-2 1-2 1-3 1-3 1-4 1-4
2.0	Quick	Start	2-1
3.0	Install	ation	
	3.1 3.2 3.3 3.4	PCI Configuration Jumpers & Headers Connectors: P2, J1, and J2 Installation.	
4.0	Initialization		4-1
	4.1 4.2 4.3	PCI Initialization Initialization Commands Configuration Memory	
5.0	Comm	nunicating with the PC	5-1
	5.1	 Commands and Responses Protocol	
	5.2	Interrupts	5-3 5-4
	5.3	 5.2.2 Step-by-Step Interrupt Processing Summary Commands and Responses 5.3.1 Characteristics of Command Strings 5.3.2 Command Parameters 	5-4 5-4

		5.3.3 Commands from the PC to the H.100 E&M Board	5-5
		5.3.4 Responses from the H.100 E&M Board	5-9
6.0	The F	I.100 Bus & Clock Modes	6-1
	6.1	The H.100 Bus	6-1
	6.2	Clock Modes	
	0.2	6.2.1 Slave Mode	
		6.2.2 Primary Master Mode	
		6.2.3 Secondary Master Modes	
		6.2.4 Clock Fallback	
		6.2.5 Clock Errors	
	6.3	Configuration Information	
7.0	Using	g the E&M Board	7-1
	7.1	Overview of the Command Structure	7-1
	7.2	MVIP-95 Driver Compatibility Commands	
	7.3	Configuring the Board	
	7.4	Using the 'C' Commands	
	<i>,.</i> .	7.4.1 Making a Connection	
		7.4.2 Hook Status	
		7.4.3 Call Progress Tones	
		7.4.4 Sending DTMF Tones	
		7.4.5 Detecting DTMF Tones	
		7.4.6 Detecting Energy	
		7.4.7 Hook Flash Detection & Generation	
		7.4.8 Address Signaling Protocols	7-9
		7.4.9 MF-R1 Signaling	7-10
		7.4.10 Direct Control of the M-Lead	7-11
		7.4.11 Push To Talk Feature	7-12
		7.4.12 Guard Tone Sequence Generation	7-12
		7.4.13 Echo Suppression	7-13
		7.4.14 2100 Hz Detection	7-13
		7.4.15 Automatic Gain Control	7-14
	7.5	Examples	7-14
		7.5.1 An Example of an Inbound Call	7-14
		7.5.2 An Example of an Outgoing Call	7-15
		7.5.3 An Example of Receiving Address Digits	7-15
		7.5.4 An Example of a Hook Flash	7-16
8.0	Diagr	nostics & Error Messages	8-1
	8.1	Diagnostic Commands	8-1
	8.2	Error Messages	8-2

Appendix A	Environmental Specifications	A-1
Appendix B	Custom Tones	B-1
Appendix C	E&M Interfaces	C-1

Infinity Series H.100 E&M Board Technical Manual

Copyright © 2019 American Tel-A-Systems, Inc. dba Amtelco Printed in U.S.A. All rights reserved.

This document and the information contained herein is proprietary to American Tel-A-Systems, Inc. It is provided and accepted in confidence only for use in the installation, training, operation, maintenance, and repair of Amtelco equipment by the original owner. It also may be used for evaluation purposes if submitted with the prospect of purchase of equipment. This document may not be reproduced in whole or in part for any other purposes without the express written permission of American Tel-A-Systems, Inc.

The following statement is in lieu of a trademark symbol with every occurrence of trademarked names: trademarked names are used in this document only in an editorial fashion, and to the benefit of the trademark owner with no intention of infringement of the trademark. "MVIP", "H-MVIP", "MVIP-90", and "MVIP-95" are registered trademarks of GO-MVIP. "SCSA" and "SCbus" are registered trademarks of the Dialogic Corporation. "CT bus" and "ECTF" are registered trademarks of the Enterprise Computer Telephony Forum

American Tel-A-Systems, Inc. dba Amtelco 800-356-9148 4800 Curtin Drive, McFarland, WI 53558 4145 North Service Road, Suite 200 Burlington, Ontario L7L 6A3 257M033D

FCC Part 15 Notice

WARNING: This equipment generates, uses, and can radiate radio frequency energy and if not installed and used in accordance with the instruction manual, may cause interference to radio communications. Operation of this equipment in a residential area is likely to cause interference in which case the user at his own expense will be required to take whatever measures may be required to correct the interference.

FCC Part 68 Registration

This equipment is registered with the FCC under Part 68 as a component device for use with any generic PC Type computer or compatible. In order for FCC registration of this product to be retained, all other products used in conjunction with this product to provide your telephony function must also be FCC Part 68 registered for use with these hosts. If any of these components are not registered, then you are required to seek FCC Part 68 registration of the assembled equipment prior to connection to the telephone network. Part 68 registration specifies that you are required to maintain the approval and as such become responsible for the following:

- any component device added to your equipment, whether it bears component registration or not, will require that a Part 68 compliance evaluation is done and possibly that you have testing performed and make a modification filing to the FCC before that new component can be used;
- any modification/update made by a manufacturer to any component device within your equipment, will require that a Part 68 compliance evaluation is done and possibly that you have testing performed and make a modification filing to the FCC before the new component can be used;
- if you continue to assemble additional quantities of this compound equipment, you are required to comply with the FCC's Continuing Compliance requirements.

The telephone company has the right to request the registration information.

The Digital I/F FIC code for this equipment is 02IS5. The Service Order code for this equipment is 6.0P. The network Interface Jack for this equipment is an RJ49C.

The telephone company has the right to temporarily discontinue service. They are required to provide notification and advise of the right to file a complaint.

In case of trouble, you may be required to disconnect the board from the telephone lines until the problem is resolved.

Connection to telephone company coin service is prohibited.

Connection to party lines is subject to state tariffs.

The authorized repair center is:

American Tel-A-Systems, Inc. 800-356-9148 4800 Curtin Drive McFarland, WI 53558

There are no user serviceable components on the board. All repairs should be accomplished by returning the board to Amtelco with a description of the problem.

WARNING: This device contains Electrostatic Sensitive Devices. Proper care should be taken when handling this device to avoid damage from static discharges.

Product Safety

The telephony cord(s) and telephony power supply must remain disconnected from the telecommunications system until the card has been installed within a host which provides the necessary protection of the operator.

If it is subsequently desired to open the host equipment for any reason, the telephony cord(s) and telephony power supply must be disconnected prior to effecting access to any internal parts which may carry telecommunications network voltages.

This board is not intended to be connected directly to the PSTN network.

Canadian Customers

CP-01, Issue 8, Part 1 Section 14.1

Notice: The industry Canada label identifies certified equipment. This certification means that the equipment meets certain telecommunications network protective, operational and safety requirements as prescribed in the appropriate Terminal Equipment Technical Requirements document(s). The Department does not guarantee the equipment will operate to the user's satisfaction.

Before installing this equipment, users should ensure that it is permissible to be connected to the facilities of the local telecommunications company. The equipment must also be installed using an acceptable method of connection. The customer should be aware that compliance with the above conditions may not prevent degradation of service in some situations.

Repairs of certified equipment should be coordinated by a representative designated by the supplier. Any repairs or alterations made by the user to this equipment, or equipment malfunctions, may give the telecommunications company cause to request the user to disconnect the equipment.

Users should ensure for their own protection that the electrical ground connections of the power utility, telephone lines and internal metallic water pipe system, if present, are connected together. This precaution may be particularly important in rural areas.

CAUTION: Users should not attempt to make such connections themselves, but should contact the appropriate electric inspection authority, or electrician, as appropriate.

The PC chassis containing this device shall be placed in a secured location with access restricted to qualified service personnel.

European Approvals

CE Approval

(6

EN55032 EMC declaration

This is a class A product. In a domestic environment, this product may cause radio interference in which case the user may be required to take adequate measures.

No changes or modifications to the H.100 E&M card are allowed without explicit written permission from American Tel-A-Systems, Inc., as these could void the end user's authority to operate the device.

Notice: The PC chassis containing this device shall be placed in a secure location with access restricted to qualified service personnel.

Declaration of Conformity

PCI Board Model Number: 257L059 XDS H.100 8 Port E&M Board

PCI Express Board Model Number: 259L030 XDS H.100 8 Port E&M Board

Standards to which the conformity is declared: EN55032, FCC Part 15B: 2018 ICES-003, EN55024, and EN60950-1

The undersigned declares that the equipment specified above:

- conforms to the above Standards,
- is in conformity to all essential requirements of Directive 2014/35/EU.

Manufacturer: Amtelco

Company name: American Tel-A-Systems Inc. dba Amtelco

Address: 4800 Curtin Drive McFarland, Wisconsin 53558 USA

Signature:

Paul n Henning

Printed Name: Paul N. Henning Position: Director of Research and Development

Date: 1 April 2018

1.0 Introduction

The Infinity Series H.100 E&M Board is designed to provide eight E&M interfaces connected to the H.100 bus. Each interface or port provides both audio transmission and control support for basic line functions such as hook status indication and detection for Type I and Type V interfaces. The board is equipped with DSP resources to provide tone generation. Each port can be programmed to conform to various national standards and practices.

This board is available in both a PCI and a PCI Express version. This manual covers both versions. For the purposes of this manual, the PCI and PCI Express buses will be referred to as the PCI bus except where it is important to differentiate between them.

The H.100 bus was devised by the Enterprise Computer Telephony Forum (ECTF) to provide a single telecom bus for the entire industry. It is intended for add-in boards using the PCI or PCI Express form factor. A wide variety of boards are available from a number of different vendors.

The board is equipped with a processor that can be used to control the lower level functions of the board. The host PC controls the board using messages passed through dual-ported RAM. The board shares a common message passing and control scheme with other Infinity Series H.100 boards.

1.1 Features and Capabilities

This section presents an overview of the features and capabilities of the Infinity Series H.100 E&M Board.

1.1.1 The E&M Interface

Eight independent ports are provided on the board. Each port on the board provides a complete E&M interface, including both the audio and signaling (E and M leads) connections. Type I and Type V E&M interfaces are supported for either the trunk or the signaling side of the connection. The

audio may be transmitted using either a 2-wire or a 4-wire interface. The 4wire interface separates the transmit and receive pairs. The signaling and audio interface type are software selectable on a port by port basis without using jumpers.

The on board firmware provides support for the common address signaling protocols such as immediate start, wink start, and delay-dial for both incoming and outgoing calls. Incoming calls can use either DTMF or pulse signaling of the address digits. Outgoing calls are limited to DTMF address digits. All timing is handled by the on board processor. For special applications such as interfacing to two-way radio transceivers, the M-lead can be controlled directly by the application.

1.1.2 DSP Functions

The H.100 E&M Board is equipped with a DSP that performs a variety of functions. DTMF and Energy detectors are available for each port. DTMF generators are available for each port for signaling purposes. Call Progress tones are also available, with dial-tone, busy, reorder, and audible ringback being provided as well as silence and a 1004 Hz calibration tone. European ETSI call progress tones are also available. In addition, the DSP has voice record and playback capabilities which are beyond the scope of this document.

1.1.3 Transceiver Support

The H.100 E&M Board has a number of features that have been added to facilitate interfacing with transceivers used in two-way communications systems. These added features include, programmable echo suppression, a push to talk feature that uses the M-lead to key the transmitter when voice energy is detected, and 2100 Hz tone detection to disable echo suppression when connected to a modem. These features may be enabled on a per port basis.

1.1.4 The H.100 Bus

The H.100 bus is a digital bus for transporting PCM (Pulse Code Modulation) signals between telephony boards. It was created by the ECTF to provide a common bus structure for computer telephony.

PCM is a standard method of digitizing phone signals. It involves encoding each channel at an 8 kHz rate using eight bits. The signals from multiple channels are then combined into a frame. On the H.100 bus, each frame consists of 128 channels or timeslots. The bit rate of the H.100 bus is 8.192 MHz. Thirty-two wires, also called streams, each carrying 128 timeslots, are combined to form the bus, and provide a total of 4096 timeslots. Two timeslots are required for a full conversation, one for each talker.

In addition to the streams, a number of other signals necessary to maintain synchronization between all the boards in the system are carried on the bus. These signals provide the clocking and framing information. Redundant clocks are provided to aid in recovery if the primary clock should fail.

The H.100 bus consists of a 68 conductor ribbon cable that is used to interconnect the boards in the system. This cable connects to a header at the upper right hand edge on each board.

1.1.5 Clock Modes

The H.100 E&M Board can operate in a variety of clock modes. Modes are available so that the master clock can either be derived from the H.100 bus or be provided by an internal source on the H.100 E&M Board. The clock redundancy and clock fallback functions of the H.100 bus are also supported so that the H.100 E&M Board can be set to provide a clock to the H.100 if the master clock on that bus should fail.

1.1.6 Message Passing

The board occupies 8K of memory space on the host PC. This 8K may reside anywhere within the PC's address space. As a PCI or PCI Express board, the address and interrupt of the board is assigned at boot time. The message passing scheme used by the Infinity Series H.100 E&M Board is identical to that of the other Infinity Series H.100 boards, allowing for the easy combination of a variety of Infinity Series H.100 boards in a single system. The message passing scheme and message syntax of Infinity Series H.100 boards is similar to that of the older XDS series of MVIP and SCbus boards.

1.1.7 Flash EAROM for Firmware

The firmware for both the main processor and the DSP is contained in Flash EAROM. This allows for easy upgrades of the firmware on the board in the field without requiring time consuming downloads every time a system boots. Once reprogrammed, the new firmware is retained even when the power is removed. The original, factory programmed firmware is also retained on board and can be accessed by installing a jumper.

1.1.8 EEPROM for Configuration Information

To reduce the burden on the application, the board has an EEPROM capable of providing non-volatile storage for configuration information. This information includes the port types, timing requirements, and address signaling protocols. This configuration information, when saved, is automatically restored on a restart, allowing the board to automatically configure itself without host intervention.

1.2 How to Use This Manual

The first five sections in this manual are organized in the order you should read and use them to get started with your H.100 E&M Board. We recommend that you begin with these three steps.

- 1. Follow the instructions in section 2.0 (Quick Start) and 3.0 (Installation). These sections will tell you if your board is operating correctly within your system. You don't need to be familiar with the board's command set to complete this step.
- 2. Read section 4.0 (Initialization) to initialize the board within your system. Your application must perform these initialization procedures whenever you power-up your PC in order for the board to communicate with the PC.

3. Read section 5.0 (Communicating with the PC) for an overview of how to communicate with the H.100 E&M Board. Section 5.0 includes a summary of the commands for constructing your application and details concerning system interrupts.

Before you can actually build your application, read sections 6.0 (The H.100 Bus & Clock Modes) and 7.0 (Using the E&M Board). These sections explain, with practical examples, how the H.100 E&M Board operates and how to use the command set to achieve the desired results. Section 8.0 (Diagnostics & Error Messages) explains diagnostic and error messages that may occur.

The Appendices contain information on power requirements and interfacing that will be helpful when installing your H.100 E&M Board.

2.0 Quick Start

This section describes the first steps you should perform to determine if your Infinity Series H.100 E&M Board is communicating correctly with your PC system. You can perform this quick check without securing the board to the PC chassis or connecting any cables.

The exact procedure will vary depending on which operating system you are running. For each operating system, drivers are required to interface to the boards. The drivers supplied by Amtelco have tests built into them to verify communications with the boards. These drivers also come supplied with utility programs that allow the developer to test communications with the board. Please consult the appropriate documentation for the driver and operating system you are using.

Quick Start Procedure

- 1. Make sure the PC power is off, then insert the board into a PCI or PCI Express slot as appropriate.
- 2. Turn on your PC.
- 3. If the Amtelco driver is not already installed, install it now, following the instructions supplied with the driver.
- 4. Most Amtelco drivers will display a list of boards that are installed (see the documentation for the particular driver that you are using). If the H.100 E&M Board is listed, skip to step 6.
- 5. If the board is not listed, there may be a problem with the board not being seated correctly in the motherboard. There may also be a problem with a memory or interrupt conflict. Power down the PC and check that the board is properly seated in the connector and repeat steps 1-4. If this does not remedy the problem, try removing any other computer telephony boards in the system. If your PC is unable to find the board, contact Amtelco for technical assistance.

- Run the program "xdsutil" supplied with the driver. Send the message IN to the H.100 E&M Board. The board should respond with the message IA.
- 8. If the Communications screen shows the correct command responses, your H.100 E&M Board is communicating with the PC. You may now power down the computer and attach the necessary cables (see section 3.4).

For technical assistance, call Amtelco at 1-608-838-4194 ext. 168.

3.0 Installation

This section describes how to install your Infinity Series H.100 E&M Board into your PC and how to use the jumpers, headers, and connectors. Before you begin the installation procedure, be sure to test the board as described in section 2.0 (Quick Start).

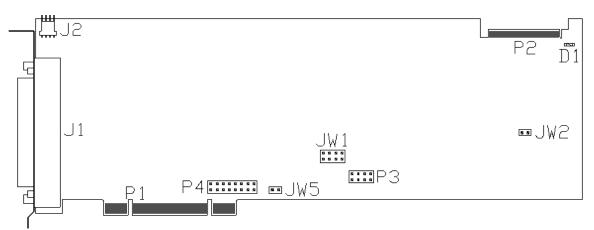


Figure 1: Location of jumpers, headers, and connectors for PCI boards

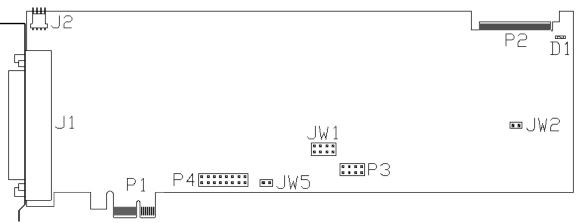


Figure 2: Location of jumpers, headers, and connectors for PCI Express boards

3.1 PCI Configuration

As Infinity Series boards conform to the PCI and PCI Express standards, there are no switches to set to configure the H.100 E&M Board's memory address, I/O addresses, or interrupt. The PC's BIOS will automatically

configure the board at boot time to avoid conflicts with other boards in the system.

3.2 Jumpers & Headers

The following is a complete list of all jumpers for the H.100 E&M Board:

- **JW1-1** Firmware Select. If firmware has been downloaded to the board, this jumper selects whether the downloaded firmware or the factory default firmware is used. When this jumper is installed, the factory default firmware is executed whenever the board is reset. When the jumper is not installed, the downloaded firmware will be executed after a reset if it is present. If no downloaded firmware is present, the factory default firmware is executed after reset.
- **JW1-2** Undefined, reserved for future use.
- JW1-3 Undefined, reserved for future use.
- JW1-4 Undefined, reserved for future use.
- **JW2** DSP Firmware Select. If JW2 is installed and downloaded DSP firmware is present, the factory DSP firmware is executed after reset. Otherwise, the downloaded firmware is executed if present
- **JW5** This jumper is used for factory testing and should not have jumpers installed.
- P3 Diagnostic port. Never install jumpers here.
- P4 This header is used for programming internal logic and should never be jumpered.

3.3 Connectors: P2, J1, and J2

P2 H.100 bus. The H.100 bus connector (P2) is a standard H.100 bus header. Use an H.100 bus ribbon cable to connect the H.100 E&M Board to other H.100 boards within the same PC chassis.

J1 Analog telephony connections. This connector is a standard RJ21 type 50 pin connector. Each port occupies three pairs in order. See Figure 3.

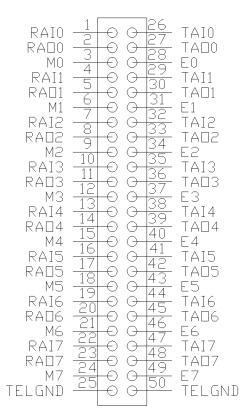


Figure 3: J1 RJ21 Pin Assignments

- J2 Power connector. This connector is used to supply power for the signaling. The pins on this connector are:
 - pin 1 -48 Volts
 - pin 2 telephony ground
 - pin 3 ring voltage (not used)
 - pin 4 telephony ground

3.4 Installation

To install the H.100 E&M Board in your system:

- 1. Do not connect the board to the PSTN. Follow the procedures described in section 2.0 to verify the operation of the board.
- 2. If the quick check is successful, turn off the PC power and remove the board from the chassis.
- 3. Install any necessary board jumpers. See section 3.2 for jumper configurations.
- 4. Reinsert the board into the chassis. Seat it properly in a PCI or PCI Express slot as appropriate in the PC chassis and tighten the screw in the back of the board to secure it. Do not connect the telephony cable to J1.
- 5. Connect the H.100 cable to P2. If needed, connect the telephony power supply cable to connector J2. Do not connect the telephony power supply to the PC.
- 6. Reinstall the PC cover. Connect the PC to the mains supply using a socket-outlet with protective earthing connection and connect any additional protective earthing used. Connect the telephony power supply to the PC.
- 7. Connect the telephony cable to J1. The telephony cable terminates in an RJ-21 male connector. Secure with mounting screws.

If it is subsequently desired to open the host equipment chassis for any reason, the telephony cable and telephony power supply must be detached prior to effecting access to any internal parts which may carry telecommunications network voltages.

The PC chassis containing this device shall be placed in a secure location with access restricted to qualified service personnel.

4.0 Initialization

This section describes the procedures necessary to initialize the system and enable the PC to communicate with the Infinity Series H.100 E&M Board. XDS drivers will implement some of these procedures.

4.1 PCI Initialization

The system BIOS is responsible for recognizing PCI boards and mapping them into the I/O and memory spaces as required. It is also responsible for assigning interrupts to the board. This is done through a set of on board registers which contain information specifying the memory, I/O, and interrupt needs of the board. A set of BIOS functions exist for accessing this information. A detailed description of these functions can be found in the *PCI BIOS Specification* published by the PCI SIG, the PCI Special Interest Group.

Normally, the drivers supplied by Amtelco will take care of the process of finding Infinity Series boards and establishing communications. The information in the rest of this subsection is for background only.

The configuration registers of every PCI board contain a vendor ID and device ID code. These codes are unique to each board vendor. All Infinity Series H.100 boards have the same vendor ID. The vendor ID is 14E3h. For the PCI version of the board, the device ID is 0101h, while for the PCI Express version the device ID is 0301h. A BIOS function exists that will find each instance of a particular vendor and device ID, and which returns with a bus and device number. The bus and device number is then used in functions to read the configuration registers.

The configuration registers contain information on the base address of the memory and I/O assigned to the board by the BIOS. A PCI board may have up to six different base addresses. On Infinity Series H.100 boards, the first two base addresses are used by the PCI bus interface logic. The third base address which is contained in registers 18-1Bh contains the memory location

of the dual-ported memory that is used to pass messages. The interrupt information is contained in register 3Ch. The information in these configuration registers can be used by a driver to address the board.

4.2 Initialization Commands

The H.100 E&M Board is initialized by sending a sequence of command messages to the board. The process of sending messages is described in detail in section 5.0, but normally it is accomplished either with a low-level driver XMT command or the API function **xds_msg_send**. Response messages are read using the low-level driver RCV command or the API function **xds_message_receive**.

To enable communications with the H.100 E&M Board, an **IN** command message should be sent to the board. The board will respond with an **IA** message.

The board may be reset using the command message **RA**. The board will respond with an **RA** message.

Your application can now configure the H.100 E&M Board using these commands

- Command Purpose
- SCmsabb(c) Sets the clock mode for the board. The parameter **m** is the clock-mode. The parameter **s** is the clock sub-mode. The parameters **a**, **bb**, and **c** are used to specify additional clock control information such as compatibility modes, clock rates, local network, and CT_NETREF settings. The default mode on power-up or restart is mode 0. See section 6.0 of this manual for details of clock mode arguments.
- **SBabcd** This command is used to define the clock rate for the lower 16 streams. As this board only supports the H.100 bit rate of 8.192 MHz, this command exists only for compatibility with earlier boards and software. The

	parameters a , b , c , d are used to set the rate for streams 0-3, 4-7, 8-11, and 12-15 respectively. The default value is 8.192 MHz. The only valid setting on this board is:		
	2 - 8.192 MHz, 128 timeslots per stream		
SEx	Sets the encoding mode for the board. The parameter \mathbf{x} can be either 'M' for Mu-Law as used in North America and Japan, or 'A' for A-Law as used in Europe and Asia. The default value is for Mu-Law.		
SPxxidn(o)	Set the DID protocol for port xx . If the port is to use a signaling protocol for address signaling it must be set using this command. This command is only used with ports set to the DID type. Supported protocols are D – Delay Dial, I – Immediate Start, and W – Wink Start. The address digits can be received as dial pulses, DTMF digits, or MF-R1 tones. The arguments i , d , n , and o are used to specify the protocol parameters:		
	 i - incoming protocol (D, I, or W) d - digit format (M, P, or T) n - number of address digits o - outgoing protocol (D, I, or W) 		
	Note that if the format is set to 'M' for MF-R1 and the n parameter is set to 'X' each received digit will be reported in an individual message. The outgoing protocol o is optional and may be omitted if outgoing address digits will not be sent.		
SS(xxxx)	Set the signaling type for each port on the board. Port types can be 'S' for Type I, signaling, 'T' for Type I, trunk, 'V' for Type V, or 'N' or 'U' for undefined or unused ports. This command will not take effect until after an RA or RP command or the next command that		

changes the state of the M-lead. See Appendix C for an explanation of the various signaling types.

ST(xx...xx) Set the port type for each port on the board. Port types can be '2' for 2-wire, '4' for 4-wire, 'R' for 4-wire Radio Interface, 'N' for 2-wire interface with direct M-lead control, 'F' for 4-wire Fast Response interface, or 'U' for undefined for unused ports. An '*' may be used to indicate no change. The '2' and '4' types are used when the M-lead is controlled by the internal state machine. The 'F', 'N', and 'R' types are used when the M-lead is to be controlled directly from the application as when interfacing to radio equipment where the M-lead controls transmission. The port type parameter must be included for each of the ports on the board.

STab Controls termination. Parameters **a** and **b** control termination for the H.100 and MVIP bus respectively. When set to 'E', termination is enabled and when set to 'D', termination is disabled. Boards on the end of the H.100 cable should have termination enabled. The MVIP termination parameter is non-functional and is only present for compatibility with existing software.

4.3 Configuration Memory

Much of the configuration information used to initialize the board is fixed in nature, such as the port configuration, port gains, address signaling protocols and hook status timing. To simplify initialization of the board, the configuration can be stored in an onboard EEPROM. This information can be recalled upon a restart of the board eliminating the need to send this information to the board each time an application runs. To control the EEPROM, three commands are provided. These are:

SMS This command saves the current configuration information.

SML This command will cause the configuration saved in the EEPROM to be loaded into the processor memory. It is not necessary to use this

command on a restart as the information saved in the EEPROM will automatically be loaded into the processor memory.

SMC This command will clear the EEPROM. If this command is used, the board will not read the EEPROM on a power up or restart and all required configuration information will have to be sent from the application.

If the board configuration is saved in the EEPROM, it will still be necessary to send the **IN** and **SC** messages to enable messages and set the clock mode.

5.0 Communicating with the PC

This section describes how the PC communicates with the Infinity Series H.100 E&M Board. It includes the definitions for the H.100 E&M Board commands and responses along with a description of the mailboxes used for messaging.

The board is controlled by the host PC through a system of four mailboxes. The messages consist of short null terminated ASCII strings, which are easy for the host software to compose and parse. The board is capable of buffering up to eight messages in either direction and can drive an interrupt line when it has a message for the host. Messages may not exceed 32 characters.

There are two main mailboxes, one for messages to the board and one for messages from the board, and two flags associated with them. A 00h in a flag byte indicates the mailbox is free, a non-zero value indicates that the mailbox is occupied. The mailboxes and their flags are contained in an 8K block of dual-ported memory at the following offsets:

receive mailbox	1F80h
transmit mailbox	1FC0h
transmit flag	1FFCh
receive flag	1FFEh

The board's base address is determined by reading PCI Configuration Space offset 18h. The 32-bit value at this location is the base address for the dual-ported memory on the board.

To send a message, the message is placed in the mailbox and the flag is set to 01h. To read a message, the message is removed from the mailbox and the flag is cleared to 00h. This will clear the interrupt hardware.

5.1 Commands and Responses Protocol

This section describes the necessary step-by-step procedures for the PC to send a command to the board and to remove a response from the board.

5.1.1 Sending Commands to the Board

The basic steps to sending a command to the H.100 E&M Board are:

- 1. Build a command. Broadly speaking, a command is a string of ASCII characters with a null (00h) termination character.
- 2. Check the transmit flag. If the flag is 0, continue with the next step to put the command in memory. If the flag is not 0, wait until the flag is 0.
- 3. Insert the command in transmit mailbox memory beginning at the address of the transmit mailbox.
- 4. Write 01h to the transmit flag. This notifies the board that a message is waiting.

5.1.2 Reading Messages From the Board

- 1. Check the receive flag. If the flag is 0, there is no message. If it is non-zero, a message is waiting. Continue with the next step to read the message.
- 2. Remove the message from memory, starting at the address of the receive mailbox. Messages are null terminated ASCII strings.
- 3. Write 0h to the receive flag.

5.1.3 Reading Board Information

A range of board information is included in memory so that it can be checked without sending a message:

Type of Information	Offset Address
Board ID	1F00-1F03
Firmware Version	1F04-1F07

Switch Chip Identifier	1F0E
Processor identifier	1F0F
Number of transmit timeslots	1F10-1F11
Base timeslot	1F12-1F13
Clock mode settings	1F18-1F1B
Board configuration	1F1C-1F1E
Clock status bits	1F1F
ID Code (serial number)	1F30-1F3F

Note: The switch and processor identifiers will be set to 'Z' and 'A', respectively, on this board. The number of reserved transmit timeslots and base timeslots were used only in the SCbus compatibility mode on earlier versions of this board and are not supported.

The board stores its identity upon power up or a hardware restart. The phrase **Restart PEC (c) Amtelco 2012** appears in the receive mailbox. The receive flag is not set and no interrupt is generated.

5.2 Interrupts

The H.100 E&M Board can generate an interrupt to the PC indicating that a message is available. The interrupt for PCI boards is assigned by the BIOS or Operating System at boot time. The assignment is dependent on which PCI slot the board is in. The interrupt line is usually shared by more than one device. If multiple Infinity Series boards are installed they may or may not all share the same interrupt line.

In order for an Infinity Series board to send interrupts to the PC, the PCI Interface circuit on the board must be programmed to enable interrupts. This is accomplished by setting bits 0 and 3 in the board's Interrupt Control/Status Register. This is a byte-wide register located at an offset of 69h from PCI Base Address 0. PCI Base Address 0 is contained in PCI Configuration Space register 10h. The Base address is a 32-bit value and is mapped into memory.

When an Infinity Series board sends a message, it generates a local interrupt to the PCI Interface circuit on the board. If the PCI Interface circuit has been programmed to generate interrupts to the PC, the local interrupt is passed

through to the PC. When the PC receives an interrupt, its Interrupt Service Routine (ISR) should check the Infinity board's receive flag to see if a message is pending (i.e. the receive flag is non-zero). It should then process the message for the board and write a 0 to the board's receive flag.

5.2.1 Interrupt Initialization

- 1. Read and then clear the board's receive flag.
- 2. Read the PCI Base Address 0 from PCI Configuration Space offset 10h (this must be a 32-bit access).
- 3. Clear bits 0, 2, and 3 of PCI Base Address 0 + 4Dh. Clear bits 1 and 3 and set bits 0 and 6 of PCI Base Address 0 + 4Ch. Do not modify any other bits in these registers. These registers are byte-wide memory mapped registers.

5.2.2 Step-by-Step Interrupt Processing Summary

- 1. Check to see if the receive flag is non-zero.
- 2. Remove the message from the receive mailbox.
- 3. Write 0h to the receive flag.
- 4. Re-enable the interrupt controller on the PC.

5.3 Commands and Responses

This section gives a general overview of the H.100 E&M Board commands and responses. The commands are grouped by function and then listed in alphabetical order by two-letter command. Refer to sections 6.0 through 8.0 for examples and explanations of how to use these commands.

5.3.1 Characteristics of Command Strings

- All commands consist of null (00h) terminated ASCII strings.
- There are no spaces or other delimiters between parameters in the commands.

- All letters in command strings must be UPPERCASE unless otherwise noted.
- Lowercase monospaced letters (such as xx) in the following command references represent parameters within commands. Each letter represents one ASCII digit.
- Numeric parameters are always hexadecimal numbers.

5.3.2 Command Parameters

The table below documents the common parameters for many of the commands listed in the next sections.

Parameter	Definition	Values
xx	port number	00-07h
sstt	H.100 bus stream & timeslot number,	ss = 00-1Fh
	ss = stream, tt = timeslot on stream	tt = 00-7Fh
aabb	H.100 bus stream & timeslot number,	aa = 00-1Fh
	aa = stream, $bb = timeslot$ on stream	$\mathbf{bb} = 00\text{-}7\text{Fh}$
bsstt	MVIP-95 terminus, $\mathbf{b} = bus$	b = H, L
	ss = stream, tt = timeslot	ss = 00-1Fh
		tt = 00-7Fh

Common Command Parameters

5.3.3 Commands from the PC to the H.100 E&M Board

Note that section 7.0 of this manual provides supplemental information for the commands and messages documented here.

Port CommandsCAxxssttSet port xx to listen to stream ss timeslot ttCBxxSet port to hold if not busy, else return SBxxCCxxssttaabbConnect port xx to stream ss timeslot tt and from
stream aa timeslot bb

CDxx Disconnect port **xx**

CExxdd	Enable energy detection for port xx , look for energy of		
CExxF	duration dd Disable energy detection for port xx		
CEXX	Generate a hook flash or	-	
CGxxf		uence on xx for function f	
CGXXI CGXXX			
	Stop guard tone sequenc		
CHxx	Put port xx on hold		
CIxx CV(1-)	Disable output to CT bus		
CKxx(ds)	Send an MF-R1 string (ds) to port xx , valid digits are		
CT	0-9, *, #, K, P, and S		
CLxx	Set port xx to detect DTMF digits, play dial tone		
CLxxo	Set port xx to detect DT	MF digits, option o	
	F - turn detection off		
	M - monitor mode, maintain existing connections		
	Q - regular mode, suppress dial tone		
CMxx	Enable audio for port xx , no switching or control		
CPxxy	Give port xx call progress tone y where y values are		
	North American tones	ETSI tones	
	0 - dial tone	6 - ETSI dial tone	
	1 - reorder	7 - ETSI congestion tone	
	2 - busy	8 - ETSI busy tone	
	3 - audible ringback	0	
	4 - Digital milliWatt		
	5 - silence	B - Japanese ringback	
CSxxsstt	Play call progress tone xx to stream ss timeslot tt , x		
	values 20-2Bh correspon		
CTxx(ds)	Send dial string ds to port xx , valid tones in string are:		
	0-9, *, #, A-D, U - upper tone (941 Hz), L - lower tone		
	(697 Hz), X - short pause, P - long pause, N - North		
	American dial tone, E - European dial tone, a-i, special &		
	programmable tones		
CVxxffffllfffllnnffrr Generate a custom tone on port xx			
	ffff = freq. 1st/2nd tone, ll = level 1st/2nd tone nn =		
	on duration, $ff = off$ duration, $rr = repetitions$		
CXxxsstt Set port xx to transmit on stream ss timeslot		on stream ss timeslot tt	
CYxxD	Disable PTT function on port xx		

CYxxE	Enable PTT function on port xx
CZxxD	Disable Echo Suppression on port xx
CZxxE	Enable Echo Suppression on port xx

Interrupt Control Commands

IN	Enable transmit interrupts and messages
IF	Disable transmit interrupts and messages

MVIP Compatibility Commands

Disable DTMF detector hh (MVIP) (00-1Fh)
Enable DTMF detector hh (MVIP) (00-1Fh)
Enable Energy detector hh (MVIP) (00-1Fh) dur. dd
Disable Energy detector hh (MVIP) (00-1Fh)
Generate the dial string (ds) with generator hh (MVIP)
(00-1Fh)
Set_output disable mode, bsstt - output terminus
Set_output enable mode, bsstt - output terminus,
bsstt - input terminus
Set_output pattern mode, bsstt - output terminus, pp -
pattern value
Disable output to the CT Bus (tristate)
Enable output to the CT Bus (tristate)

Query Commands

QHHsstt	Query ZL50031, sstt = H.100 stream and timeslot
QHLsstt	Query ZL50031, sstt = local bus stream and timeslot
QHR00rr	Query ZL50031, rr = control register address
QObsstt	Query Output for terminus bsstt
QPdx(msg)	Send message (msg) to DSP d, send only bits 0-3 of x

Reset Commands

RA	Reset all (resets ports, DSP functions, H.100 bus)
RD	Reset DSP (resets DSP chip only)
RPxx	Reset port xx

Setup Command	S	
SAxxmttmrr	Set AGC for port xx , \mathbf{m} = mode,	
	A - AGC, + - positive gain, negative gain;	
	tt = transmit gain, rr = receive gain in .5 dB steps	
SBabcd	Set bit rate for streams 0-3, 4-7, 8-11, and 12-15	
	2 - 8.192 MHz	
SCmsabb(c)	Set clock mode m submode s arguments a , bb & c	
SDttffffllfffllnnff Set custom dialed digit tone tt		
	ffff = freq. 1st & 2nd tone, ll = level 1st & 2nd tone	
	nn = on duration, ff = off duration	
SEa	Set Encoding mode a , M = Mu-Law, A= A-Law	
SHxxaabb	Set hookflash detect times for port xx	
	aa = minimum time, bb = maximum time	
SIttfffllfffllnnffnnff Set custom information (call progress) tone ii		
	ffff = freq. 1st & 2nd tone, $11 =$ level 1st & 2nd tone	
	nn = 1 st & 2nd on duration, $ff = 1$ st & 2nd off duration	
SMC	Clear the EEPROM configuration contents	
SML	Load the EEPROM contents onto the board	
SMS	Save the configuration in EEPROM	
SPxxidn(o)	Set port xx to address signaling protocol where	
	i - incoming protocol (D, I, or W)	
	d - digit format (P for pulse, T for DTMF tone, M for	
	MF-R1)	
	n - number of address digits (X if each MF-R1 digit is to	
	be reported individually)	
	• - optional outgoing protocol (D, I, or W)	
	D - delay dial, I- immediate start, W - wink start	
SS(xxxx)	Set signaling type for each port where \mathbf{x} values are:	
	N - No signaling type set	
	S - Type I, Signaling interface (CO side)	
	T - Type I, Trunk interface (CPE side)	
	V - Type V, both sides	
	U - Undefined/unused	
	* - No change to port type	
ST(xxxx)	Set port types for each port where \mathbf{x} values are:	
	2 - 2-Wire interface	

	4 - 4-Wire interface	
	F - Fast response interface (4-wire, direct control)	
	N - No Port type defined (2-wire, direct control)	
	R - Radio interface port (4-wire, direct control)	
	U - Undefined/unused	
	* - No change to port type	
STab	Set bus termination, a - H.100 bus, b - MVIP bus, E -	
	enable, D - disable. Option b is ignored.	
SV0xtt	Set push-to-talk threshold for port \mathbf{x} , \mathbf{tt} = value	
SV1xtt	Set echo suppression threshold port \mathbf{x} , \mathbf{tt} = value	
SYD	Disable 2100 Hz detection mode	
SYE	Enable 2100 Hz detection mode	
SZm	Select Call Progress tone set, $m = N$, North American, m	
	= E, ETSI	

M-Lead Control Commands

XCxx	Close M-lead relay (off-hook) for port xx
XOxx	Open M-lead relay (on-hook) for port xx

Version Requests

VA	Checksum of alternate segment request
VC	Version request
VD	DSP version request

Download Commands

@xxxx	Download 1K block to address xxxx
@Es	Erase segment s
GA	Jump to Alternate Program
GM	Jump to Main Program
@Ws	Write from RAM segment s

5.3.4 Responses from the H.100 E&M Board

Acknowledgments

- IA Acknowledge interrupts enabled
- **RA** Reset all acknowledged
- **RPxx** Reset port **xx** acknowledged

SMx	EEPROM operation $\mathbf{x} = 0$ - failure, 1 - success
-----	--

Error Messages	
ECxx	Clock error bit xx
ETxx	Incoming DID timeout
EWxx	Outgoing wink timeout

Query Responses

QHHssttcsttdd	Reply to ZL50031 H.100 bus query, cstt - stream &
	timeslot, control bits, dd - data memory contents
QHLssttcsttdd	Reply to ZL50031 local bus query, cstt - source
	stream, timeslot, control, dd - data memory contents
QHR00rrdddd	Reply to ZL50031 register query, rr - reg., dddd - data
QObssttm(bsstt)	Query_output reply, bsstt - output terminus, m - mode,
	(bsstt) input terminus
QPd(text)	DSP diagnostic responses from DSP d

Port State Change Messages

I of i State Chang	ge messages
SBxx	Port xx is busy (response to CBxx message)
SCxx	Connect on Port xx acknowledged
SDxx(ddd)	DID address digits (ddd) detected on port xx
SExx	Tone string on Port xx completed
SEXhh	Tone string from generator hh ended (MVIP mode)
SFxx	Port xx off-hook
SHxx	Hold on Port xx acknowledged
SIxx	Disconnect on Port xx acknowledged
SLxx	Listen on Port xx acknowledged
SMxx	Audio enable on Port xx acknowledged
SNxx	Port xx on-hook
SPxxr	Energy detection on port xx , $\mathbf{r} = 1$ energy detected, $\mathbf{r} =$
	0 energy ended
SPXhhr	Energy detector hh results r (MVIP mode)
SQxx	Hook flash detected on port xx
STxxd	DTMF digit d detected on Port xx
STXhhd	DTMF digit d detected by detector hh (MVIP)
SXxx	Transmit on Port xx acknowledged

Diagnostic Responses

 VAxxxx Checksum of the alternate segment
 VCxxxxyyyyPEC Version response, xxxx = checksum of main segment, yyyy = version number, PEC = board type (ARM & ZL50031)
 VDxxxx DSP version xxxx
 U(msg) An undefined or unparseable message response

6.0 The H.100 Bus & Clock Modes

The Infinity Series H.100 E&M Board provides a means of connecting analog E&M ports to the digital H.100 computer telephony bus. Through this bus, the E&M ports can be connected to other H.100 compatible boards. To accomplish this, the board has complete access to all streams and timeslots on the bus. It is capable of operating in a variety of clock modes compatible with H.100 operation.

6.1 The H.100 Bus

The H.100 bus consists of 32 Pulse Code Modulation (PCM) streams operating at an 8.192 MHz clock rate. Each stream contains 128 timeslots, for a total of 4096 timeslots. In addition to the PCM data signals, there are a number of bit, frame, and network reference signals that are used to synchronize the operation of multiple boards.

For the purposes of commands, a particular H.100 timeslot is referred to by a four digit hexadecimal number. The first two digits are the stream number, while the last two digits are the timeslot within the stream. Streams range from 00h to 1Fh, and timeslots from 00-7Fh.

The physical H.100 bus is a 68 conductor ribbon cable that connects the various boards in the system. As in any such bus, termination is important for its proper operation. The board at each end of the H.100 cable must have the proper termination installed or enabled, while any board between the ends must not terminate the bus. For the H.100 E&M Board, termination is enabled using a command of the form **STab** where **a** controls the H.100 termination and **b** the MVIP bus termination (non-functional, provided for software compatibility). Termination is enabled if the parameter is 'E' and disabled if the parameter is 'D'.

6.2 Clock Modes

The H.100 bus specification defines a variety of clock signals. Two clock signals CT bus A and CT bus B are provided for redundancy. In addition, a signal called CT_NETREF is defined which may be referenced to an external clock source such as a T1 or E1 span. This signal exists to aid in recovery if the primary clock source should fail.

The clock mode must be set before any connections can be made with other boards. The clock mode is set using the Set Clock command **SCmsabbc**, where **m** is the clock mode, **s** is the sub-mode, and **a**, **bb**, and **c** are additional arguments used to select clock sources and specify compatibility modes. The default clock mode on a power up is to provide a local clock, but to neither source clock signals to the bus or derive the clock from the bus. The possible clock modes are:

- 0 no clocks to or from the bus
- 1 clocks slaved to the CT bus
- 2 the board is clock master CT bus clock A
- 3 the board is clock master CT bus clock B
- 4 the board is secondary master for CT bus clock A
- 5 the board is secondary master for CT bus clock B

Connections are possible only when all boards within a system are synchronized to the same clock. Only one board in a system can provide the H.100 bus clock. The other boards in the system must slave their internal clocks to the master. If the H.100 E&M Board is to use the H.100 bus clock, this clock must be provided by another board before switching can be accomplished.

6.2.1 Slave Mode

In the Slave Mode, the H.100 E&M Board derives its clocks from one of the clock signals on the CT bus. The clock signal is selected with the submode argument in the **SC** command. The possible clock signals are:

0 - CT bus clock A 1 - CT bus clock B 2 - reserved
3 - reserved
4 - reserved
5 - reserved
6 - CT bus clock A, auto-fallback mode
7 - CT bus clock B, auto-fallback mode

Argument **a** is used to set the CT_NETREF mode, while argument **bb** is used to select the source of CT_NETREF. The choices for argument **a** are:

0 - No CT_NETREF output

1 - CT_NETREF_1 output is enabled

2 - CT_NETREF_2 output is enabled

It should be noted that CT_NETREF_2 is defined only for the H.110 bus and not the H.100 bus. It is included for upward compatibility. As the H.100 E&M Board does not connect to any external digital networks, only the "No CT_NETREF output" selection is valid. The CT_NETREF source is specified by argument **bb**, and should always be set to 00.

6.2.2 Primary Master Mode

In modes 2 or 3, the board supplies the CT master clocks A or B respectively. Other boards on the H.100 bus will synchronize to one of these clocks. The source of the clock is selected by the submode argument **s**. The choices are:

0 - freerun, the board's internal clock 1 - CT_NETREF

For submode 1, argument **bb** will select the frequency of the CT_NETREF signal. The choice is:

00 - 8 kHz (frame rate)

Note that on earlier boards other CT_NETREF rates were supported, but that this is not possible with the current switching chip.

Submode 0 should only be chosen if there are no other boards in the system that can derive clocks from an external digital network.

For all modes, argument **a** should be set to 0. This value was used on earlier versions of the board for setting clock signals for legacy buses and has been retained for software compatibility.

6.2.3 Secondary Master Modes

When a board is operating as a secondary master, it uses the other clock signal as a source, i.e. if a board is the secondary master for CT clock B, it uses CT clock A as a source and provides CT clock B. If the primary clock fails, the secondary master then becomes the clock master. Typically, one board will be set as the master for clock A and another board as the secondary master for clock B, or vice versa. If the clock source specified by the submode is either of the CT_NETREF signals the board will automatically fall back on that source if the primary clock source should fail. If set to free-run, it will fall back to a PLL that was locked to the primary master clock.

In all secondary master modes, if the primary master fails, the board will automatically become the new primary master. If the original primary master is restored, the clock mode for the original secondary master must be reset.

When operating in secondary master mode, the arguments **s**, **a**, and **bb** are the same as when operating as a primary master.

6.2.4 Clock Fallback

The H.100 Specification details a scheme for automatically recovering from a clock failure. One of the CT bus clocks, either A or B is designated the master clock. The other clock is the secondary master and is generated by a different board than the primary clock. While the primary clock is valid, the secondary clock is locked to it. If the primary clock should fail, the secondary clock takes over using a local oscillator, CT_NETREF, or a local network as the source. Boards that are slaves should automatically fall back to the secondary clock. After a failure of the master clock, system software should designate new primary and secondary clocks. The new primary may

be the previous secondary clock master. For Infinity Series H.100 boards, this will involve sending a set clock command with the new primary clock information.

When an Infinity Series board is set for automatic fallback, the board will automatically switch to the secondary clock if the primary clock fails. When this occurs, the board will send an **EC** message indicating the failure. When the application designates a new primary master, it should send a new clock mode command to the board even though auto-fallback may have occurred.

6.2.5 Clock Errors

If the board detects a problem with the clocks, it will generate a clock error, which notifies the application that it should take appropriate action. Clock errors are reported in the Clock Error Bit message, **ECxx** where the **xx** is a hexadecimal value in which each bit identifies the specific error. A value of 1 indicates an error condition. The bits are as follows:

<u>bit</u>	Error Description
0	CT bus clock A
1	CT bus clock B
2	reserved - always 1
3	reserved - always 1
4	reserved - always 1
5	reserved - always 1

6.3 Configuration Information

Information on the clock mode setting, stream rates, and other configuration settings is available in the dual-ported memory in an eight byte block beginning at an offset of 1F18h. The first four bytes are the clock mode, the submode, and the **a** and **bb** arguments from the set clock command **SC**. The next byte contains the stream rate information from the **SB** command with bits 0-1 containing the value for streams 0-3, bits 2-3 for streams 4-7, and so on. Bits 0 and 1 of the sixth byte indicate the state of the H.100 and MVIP termination, respectively, with a value of 1 being the enabled state. The seventh byte will always be 0 for the H.100 E&M Board as the board cannot derive clocks from an external network. The eighth byte contains the clock

error status bits. These are in the same order as in the **EC** clock error message (section 6.2.5).

7.0 Using the E&M Board

This section describes the process used for controlling the ports on the Infinity Series H.100 E&M Board. The steps necessary for configuring a board will be described. Basic functions such as making a connection, playing call progress and DTMF tones, and detecting DTMF tones and energy will be described, as will echo suppression and the push to talk feature used for interfacing to two-way radio systems. Examples of making incoming and outgoing calls combining several functions are included.

7.1 Overview of the Command Structure

The command set described in this section are called 'C' commands. Each of these commands instructs the board to take all the actions necessary to perform a function such as making a connection, playing a tone, or detecting DTMF digits. Thus, the command to detect DTMF digits will play dial tone to the port, connect it to a DTMF detector, and activate that detector.

Many of the commands use a common form for the various arguments. The port number is usually the first argument, and will be between 00 and 07.

The arguments used to define the source or destination consist of a four digit hexadecimal number. The first two digits are used to indicate the stream. There are 32 streams defined on the H.100 bus and these range from 00 to 1Fh. The last two digits are used to indicate the timeslot. H.100 streams have 128 timeslots ranging from 00-7Fh. As an example, the argument **0712** would refer to stream 7, timeslot 12h (18 decimal).

7.2 MVIP-95 Driver Compatibility Commands

Several commands exist for compatibility with the MVIP-95 driver specification. These commands are also useful for controlling the switching resources outside of the "state-machine" model. This specification uses the concept of a "terminus" to define an input or output timeslot. The terminus argument consists of three parts, a bus, a stream within the bus, and a timeslot on that stream. In MVIP compatibility messages, a terminus is represented by a five character string. The first character indicates the bus. Valid bus selections are 'H' for the H.100 CT bus, and 'L' for the local bus. The local bus provides connections to the analog ports and DSP resources as shown in the following table:

Local Stream	Input	Output
0	ports 00-07h	ports 00-07h
1	voice ports 00-1Fh	voice ports 00-1Fh
2	none	call progress tones 00-0Bh
3	DTMF & Energy	DTMF generators 00-1Fh
	detectors 00-1Fh	

In the MVIP compatibility mode, connections are controlled using the Set Output command MO. This command takes the form MObssttm, where bsstt is the output terminus being controlled, and m is the mode. Valid modes are 'D' for disable, 'E' for enable, and 'P' for pattern output. In the enabled mode, the input terminus follows the mode character, and in the pattern mode, a two digit hexadecimal number representing the value of the byte to be output follows the mode. As an example, the message "MOH0123EL0000" would enable a connection from port 00 to the H.100 timeslot 23h, stream 1. Connections can be made between the H.100 bus and the local bus, or between timeslots on the local bus. To enable audio, it is also necessary to issue a CMxx command.

In the MVIP compatibility mode, additional commands are needed to control the DSP resources. The DTMF detectors are controlled with a command of the form **MDhhm** where **hh** is the detector number or handle and **m** is the mode, either 'D' to disable or 'E' to enable the detector. When a detector is enabled, detected digits are reported in a message of the form **STXhhd** where **hh** is the detector number and **d** is the digit. The Energy detectors are controlled with a command of the form **MEhhdd** where **hh** is the detector number and **dd** is the minimum duration of the signal to be detected in 100 ms increments. To disable an energy detector, the command takes the form **MEhhF**. To generate DTMF digits the command takes the form **MGhh (string)** where **hh** is the generator and **(string)** is the string of DTMF digits. This string may include pauses. Completion of the string is indicated by a message of the form **SEXhh** where **hh** is the generator number. To access the DSP resources, an **MO** Set Output command must be issued to connect the resource to the desired port or H.100 timeslot as well as issuing the resource control command. It is the responsibility of the application to manage the DSP resources in the MVIP compatibility mode.

As an example of detecting digits in the MVIP compatibility mode:

<u>commands</u>	<u>responses</u>	description
MOL0000EL0200		connect port 00 to dial tone
MOL0301EL0000		connect DTMF detector 1 to port 00
MD01E		enable DTMF detector 1
	STX011	digit 1 detected
MOL0000D		disable dial-tone
	STX012	digit 2 detected
	STX013	digit 3 detected
MOL0301D		disable input to detector 1
MD01D		disable DTMF detector 1

A query command **QObsstt** is also available to query the state of the output terminus **bsstt**. This command corresponds to the Query_Output command in the MVIP-95 specification. The response takes the form **QObssttm(bsstt)** where **bsstt** is the output terminus, **m** is the mode, and if the mode is enable, the second **bsstt** is the input terminus.

7.3 Configuring the Board

Several steps are necessary when configuring the board. The most important item is to select the clock mode. Only one board in the system can generate the Master Clock. If available, an E1, T1, or Primary Rate ISDN board should serve as the master. If no such board exists in the system, and one or more Basic Rate ISDN ports configured as a terminal equipment interface is connected to the public switched telephone network, then one of these ports should be the source of the master clock. (See section 6.2 for clock mode details.)

Several other steps may be necessary to configure individual ports. The **ST** command is used to configure the audio interface for each port as well as signaling behavior. It consists of characters, one for each port, representing the port type. A '2' defines a port as a 2-wire E&M port, a '4' as a 4-wire E&M port, an 'R' as a 4-wire Radio Interface port, an 'F' as a fast response 4-wire Radio Interface port, and an 'N' or 'U' as undefined or unused 2-wire port. When set to 2 or 4 wire types the E and M leads are coupled to a state machine controlled by the on board processor. This state machine will automatically disable the audio and put the M-lead in the on-hook state if it senses that the E-lead had returned to the on-hook state. The M-lead will also be placed in the off-hook state whenever a port is connected or placed on hold. The Radio Interface port types are used to connect to equipment such as a radio transceiver that requires that the M-lead be controlled independent of the port state, for example, to control transmission on a transceiver. This port type allows the M-lead to be controlled directly from the application. Changes in the E-lead will be reported, but will not affect the port state. The radio port type has a 4-wire audio interface. The 'N' type provides the same behavior with a 2-wire interface. As an example, if the first four ports are to operate as 4-wire E&M ports, the next two are to operate as 2-wire ports, and the rest as unused ports, then the **ST** message to be sent would be:

ST44422NN

There are a number of different types of E&M ports, the differences being mainly in how the E and M leads are referenced to ground and -48 V. The different types are designated with Roman numerals, i.e. "Type V". The H.100 E&M Board supports the Type I and Type V interfaces. The Type I interface is asymmetrical, that is there is a signaling and trunk side which do not reference the E and M leads in the same manner. A signaling interface cannot be connected to another signaling interface. The Type V interface is symmetric. To select the signaling type, the **SS** command is used. As with the **ST** command, this command consists of one character to select the interface type for each port. The choices are, 'S' for Type I - signaling, 'T' for Type I - trunk, 'V' for type V, and 'N' or 'U' for undefined or unused. As example, the command:

SSSTSTVVNN

would set ports 0 and 2 to Type I-signaling, ports 1 and 3 to Type I-trunk, ports 4 and 5 to Type V and port 6 and 7 to none or unused. This command will not take effect until after an **RA** or **RP** command or the next command that changes the state of the M-lead. Further details on the E&M interface types can be found in Appendix C.

The port type, signaling interface, and address protocol information can be stored in the EEPROM to be loaded automatically on power up or a restart. See section 4.3 for details.

7.4 Using the 'C' Commands

The analog ports on the H.100 E&M Board can be set to provide full-duplex connections as well as half-duplex connections in either direction. They can also be used to send DTMF and call progress tones as well as provide DTMF and energy detection.

Changes in the port state are reported in state change messages. These consist of the letter 'S' followed by a letter indicating the change, the port number, and an optional information character. An example is the message **SIOO** which indicates that port 00 has returned to the idle state.

7.4.1 Making a Connection

A two-way connection can be made with a port using the Connect Command CC. This command takes the form CCxxssttaabb, where xx is the port number, sstt is the destination stream and timeslot and aabb is the source stream and timeslot to be connected to. As an example, the message CC0001020304 would connect port 00 with timeslot 2, stream 1 being the transmit timeslot and timeslot 4, stream 3 the receive timeslot. In addition to two-way connections, one-way connections are also possible in either direction. The Audit command CA is used to create a connection from a timeslot to a port. This command takes the form CAxxsstt, where xx is the port number, ss is the stream, and tt the timeslot of the timeslot being audited. As an example, **CA000201** would direct timeslot 1 of stream 2 to port 00.

The Transmit command **CX** is used to setup a port to transmit towards the H.100 bus. This command takes the form **CXxxsstt** where **xx** is the port number, **ss** is the stream and **tt** is the destination timeslot. As an example of using a port as an input, if port 01 is to transmit on timeslot 5 of stream 6 the command **CX010605** would be sent.

A connection will be broken by a Disconnect command. The Disconnect command **CDxx** will disable the port output and any H.100 bus connection. An idle state change message **SIxx** will signal that the port has returned to the idle state.

A Hold or other port command, such as playing a call progress tone, will also break a connection. The Hold command **CHxx** will disable audio to and from the port. If the port was connected to the H.100 bus, a silence pattern will be output to the H.100 bus. This pattern can be disabled by a **CIxx** command. It will also be cleared if a connect or disconnect command is issued for the port.

7.4.2 Hook Status

The E-lead is used by the far end for signaling purposes. The state of the E-lead is reported with hook-status messages. These take the form **SFxx** for off-hook, and **SNxx** for on-hook where **xx** is the port number. If a port is set to either the 2-wire or 4-wire types, a transition from the off-hook to the on-hook state will cause the port to disconnect, i.e. the M-lead will be returned to the on-hook state, and the audio will be disconnected. When a disconnect command is issued to a port, it will not return to the idle state until the E-lead is in the on-hook state. This will be indicated by an **SI** message. For the Radio Interface type, the state of the E-lead will be reported with **SF** and **SN** messages, but the M-lead and audio will not be affected. It should be noted that as the audio is carried separately from the signaling leads, audio may pass when the far end is on hook.

7.4.3 Call Progress Tones

The on-board DSP can be used to play any of the standard Call Progress tones to a port. The tones supported are dial tone, busy tone, reorder tone, and audible ringback. Silence and a calibration tone of 1004 Hz can also be played. A set of tones compatible with ETR 187 may also be selected for use in Europe along with several ringback formats. The Call Progress command **CP** is used to play tones. This message is of the form **CPxxt**, where **xx** is the port and **t** is the code of the tone. For example, the command **CP002** will play busy tone to port 00. The tone will stop playing if another command is issued for the port such as a connect. To select which set of tones to use, the **SZm** command is used, where **m** is either an 'N' for North American tones or 'E' for ETSI tones. This selection may be saved to EEPROM.

7.4.4 Sending DTMF Tones

A string of DTMF tones can be sent using the **CT** command. Any of the 16 DTMF tones can be sent. Pauses may be embedded that are one or ten digit times (200 ms or 2 s). Single tones of 697 and 941 Hz are also possible. The tone string length can be up to 27 characters long. The command consists of **CT** followed by the port number and the string of tones. As an example, the command **CT039P7654321** would send the digit '9', pause two seconds, and then send the digits "7654321" to port 3.

On receiving the command, the board will respond with an **SL** state change message to indicate that the port is listening to a DTMF generator. When the tone string has finished, the board will send an **SE** message to indicate the string is ended and place the port in the hold state.

7.4.5 Detecting DTMF Tones

The on-board DSP can be used to detect DTMF tones on a port. The Listen for DTMF command takes the form **CLxxo**, where **xx** is the port number and **o** is an option. If no option is given, dial tone will automatically be played to the port until the first tone is detected. If the option is 'Q', then no dial tone will be played. If the option is 'M', then detection will take place without interrupting existing connections. The 'F' option will disable detection that is in progress. As an example, the message **CL00** will enable DTMF detection on port 00 and play dial tone.

As each tone is detected, the board will send a Tone detected state change message of the form **STxxd** where **xx** is the port number and **d** is the tone. As an example, the message **ST005** indicates that the digit 5 has been detected on port 00. All sixteen DTMF tones can be detected. Detection will remain active until a command is issued for the port.

7.4.6 Detecting Energy

Each port is equipped with an energy detection function. The energy detector can be set to look for audio energy with a minimum duration time. When a continuous audio signal has been detected for that time, a message is sent. Another message is sent when the audio signal stops. This feature can be used to monitor for dial tone restoration or call progress tones. Energy detection does not affect existing connections and can be used in conjunction with DTMF detection.

To enable energy detection on a port the energy command **CE** is used. This command takes the form **CExxdd** where **xx** is the port number and **dd** is the duration in steps of 100 ms. The range is from 100 ms to 22.3 s or from 01h to DFh. For example, the command **CE0714** would enable energy detection on port 7 with a duration of 14h or 2 seconds. When a signal is detected the message would take the form **SP071** in this example where the '1' indicates detection. A '0' would indicate that the signal has stopped.

Energy detection will be disabled when the port changes state due to a command. It can also be disabled without affecting the port state by sending a command where the duration is replaced by a single character **F**. In the example above, this would be **CE07F**.

7.4.7 Hook Flash Detection & Generation

Some equipment can generate a short on-hook signal to get the attention of the controlling software for purposes such as initiating a transfer or answering a waiting call. When this is done on ports that are of the 2 or 4 wire type a message of the form **SQxx** where **xx** is the port number that

detected the hook flash. The application can then take appropriate action. It should be noted that when a hook flash is detected, the board takes no other action other than sending the message.

The timing of the flash or pause signal may vary with switch type and country. To allow for these variations, the hook flash timing can be changed on a port by port basis. This is done with a command of the form **SHxxaabb** where **xx** is the port number, **aa** is the minimum time and **bb** is the maximum time for the hook flash in 10 ms increments. On-hook signals of less than the minimum time will be ignored, those that are greater than the maximum will be treated as a disconnect. For example, the message **SH00284B** would set the minimum time for port 00 to 400 ms and the maximum time to 750 ms The hook flash timing parameters may be saved in EEPROM.

A hook flash can also be generated on the M-lead. This is done with a command of the form **CFxxd** where **xx** is the port number and **d** is the duration in 100 ms increments.

7.4.8 Address Signaling Protocols

E & M interfaces are sometimes used to interface to PBXs or channel banks. In these applications, a single interface may be used to channel calls to more than one destination or for more than one phone number. In these applications which are sometimes called Direct Inward Dialing or DID, one or more digits of information is sent by the originating interface to indicate the ultimate destination. These digits are referred to as "address" digits and can be sent as either DTMF or MF-R1 signals on the audio pairs or as pulses on the E-lead. There are several standard protocols that define the timing of the digits, i.e. the time from the off-hook signal till the digits can begin and the time between digits, and the form of the acknowledgment or ready signal sent by the destination interface.

The acknowledgment, if required, takes the form of a momentary off-hook signal or "wink" on the M-lead. If no acknowledgment is required before the digits are sent, it is referred to as "immediate start". If a "wink" is required, it is referred to as "wink start." The "wink" is typically 200 ms long. A

variation called "delay dial" starts the wink and ends it when the digit detector is ready to accept digits.

To set the protocol for a port, a command of the form **SPxxidno** is used where **xx** is the port number, **i** indicates the protocol for incoming calls, **d** indicates whether the digits are sent by DTMF or pulses, **n** is the number of digits, and **o** indicates the protocol if any for outgoing calls. The protocol is indicated by an 'I' for immediate start, a 'W' for wink start, or a 'D' for delay dial start. A 'T' is used to indicate DTMF tone digits, an 'M' for MF-R1 digits, and a 'P' for pulsed digits. The number of digits indicated by **n** is typically 3 or 4, but can be any number from 1 to 15. If the interface is not used for outgoing calls or if the outgoing protocol is immediate start, the **o** parameter can be omitted from the message. As an example, to set port 0 for 4 DTMF digits, wink start, the command would be **SPO0WP4**.

When a protocol is set for a port, the on board processor takes care of all of the timing and acknowledgments. When the digits are received, they will be indicated in a message of the form **SDxxdd...d** where **xx** is the port number and **dd...d** are the collected digits. The message will not be sent until all of the digits are received. If an off-hook is detected, but the address digits do not follow within 10 seconds, an error of the form **ETxx** will be reported.

When making an outgoing call, the **CT** command can be used to send the address digits (section 7.4.4). The board will wait until the acknowledgment is received before sending the digits. If a wink is expected, and not received within 10 seconds, an error message of the form **EWxx** will be reported.

7.4.9 MF-R1 Signaling

In addition to DTMF or "touch tone" digits, the E&M board can send and receive MF or "multi-frequency" digits. MF uses a different set of frequencies than DTMF. In North America, the MF-R1 protocol is used, while in Europe and most of the rest of the world the MF-R2 protocol is used. The H.100 E&M Board supports the MF-R1 protocol. To enable the reception of MF digits in addressing signaling, the digit format should be set to 'M' in the **SP** command.

The MF-R1 format defines several tone pairs in addition to the digits 0-9 that are used to indicate the beginning and end of the address digit string. These tone pairs are called KP, ST, and STP which are represented by 'K', 'S', and 'P' respectively. KP is used to indicate the start of the digit string and STP the end of the number. In an alternate format where both the calling and called numbers are sent, ST is used to separate the two number strings and to indicate the end of the address digits. The board will not include the KP, ST or STP in the **SD** message, and will separate the two numbers, if present, with a '/' character.

As there are a number of different variations of the MF-R1 format, an option has been included which causes the board to report each digit as received. This allows the application to interpret the address digit string. To set this option, the argument for the number of digits in the **SP** command should be set to 'X'.

The H.100 E&M Board is also capable of sending MF-R1 digits. This is done with a command of the form **CKxxdd...d** where **xx** is the port number and the **dd...d** is the digit string to be sent. Typically, an MF string begins with a KP and ends with an STP, though there are variations on this format. As an example, to send the string of digits 1, 2, 3 framed by a KP and ST on port 04, the command would be **CK04K123P**.

7.4.10 Direct Control of the M-Lead

For some applications such as controlling a two-way radio transceiver, it may be desirable for an application to directly control the M-lead. This is possible for ports set to type 'F', 'N', or 'R'. The command to put the Mlead in the off-hook state is of the form **XCxx** where **xx** is the port number. The command to put the M-lead in the on-hook state has the form **XOxx**. These commands will not affect the audio portion of the interface. When set for direct control, changes in the E-lead state will be reported with messages of the form **SFxx** when the E-lead is asserted, and **SNxx** when the E-lead is deasserted where **xx** is the port number. The 'N' and 'R' types delay reporting changes until the change has persisted for 100 ms, while the 'F' type reports changes after 1 ms.

7.4.11 Push To Talk Feature

To facilitate interfacing to radio transceivers, the H.100 E&M Board includes a Push To Talk feature which may be used to key the transceiver when voice energy is detected on the outgoing timeslot of a port. When enabled, the M-lead will be asserted only when this voice energy is detected. To enable the feature on a port, a command of the form **CYxxE** is sent, where **xx** is the port number. The feature may be disabled by sending a command of the form **CYxxD**. The threshold for the push-to-talk energy level may be set using a command of the form **SVOxt** where **x** is the port number and **tt** is the threshold level in -dBm. Ports for which the Push To Talk feature will be enabled should be set for direct control of the M-lead by setting them to type 'N' or 'R' (see section 7.4.10). The **XC** command should be issued during the radio session as Push To Talk will not function if the M-lead is in the open state. The session may be ended by sending an **XO** command.

7.4.12 Guard Tone Sequence Generation

The H.100 E&M Board is capable of generating a guard tone sequence for controlling radio transmitters. This sequence consists of a high level 2175 Hz tone for 120 ms followed by a function tone for 40 ms to select a channel followed by a low level continuous 2175 Hz guard tone for the duration of the transmit audio.

The command to generate this sequence takes the form CGxxf where xx is the port number and f is the function tone. The function tone argument has a range of 0-Fh with '0' generating a 1950 Hz tone, 'F' generating a 450 Hz tone, and the values in between generating tones in decreasing steps of 100 Hz. A command of the form CGxxX is used to turn off the low level guard tone.

To use this command, the port must first be placed in the Connect State using either the **CC** or **CM** commands. If the **CM** command is used, the audio path is controlled with **MO** commands. When a **CG** command is issued, the high level and function tones are played and then the connection is reestablished with the low level guard tone superimposed on the output. When a **CGxxX** command is issued, the superimposed tone is removed but the connection remains. Therefore it is only necessary to issue a single **CC** or **CM** command at the beginning of the call.

Following is an example using the CC command for channel 4, 1750 Hz. The transmitter is keyed twice before the call is disconnected.

<u>commands</u>	description
CC0001000200	the connection is established
CG003	the 1st guard tone sequence is sent
CG00X	the low level guard tone is removed
CG003	the 2nd guard tone sequence is sent
CD00	the port is disconnected

Note that when the port is disconnected, the guard tone is automatically removed.

7.4.13 Echo Suppression

Echo Suppression may be enabled on a per port basis. When activated, it will compare the audio signal in the transmit and receive directions and suppress the receive signal if certain conditions are met. Echo suppression is enabled with a command of the form **CZxxE** where **xx** is the port number. Once enabled, it may be disabled using a command of the form **CZxxD**. It may also be enabled in the opposite direction by sending a command of the form **CZxX**.

The threshold for echo suppression may be set using a command of the form **SV1xtt** where **x** is the port number and **tt** is the threshold level in -dBm.

7.4.14 2100 Hz Detection

When using echo suppression, it may be desirable to disable it on a per call basis for calls involving modems. This may be determined by detecting the 2100 Hz tone generated by a modem at the far end. The 2100 Hz tone detection on the H.100 E&M Board uses the DTMF detector and the column detector normally used to detect tones A, B, C, and D. 2100 Hz detection is enabled using a command of the form **SYE** and disabled with a command of

the form **SYD**. This command controls all of the detectors on the board. The detection on a port is enabled using the standard DTMF detection commands **CL** or **MD**. If a 2100 Hz tone is detected it is reported with the DTMF tone detection message **ST** with a tone of **A**.

7.4.15 Automatic Gain Control

The H.100 E&M Board is equipped with an Automatic Gain Control (AGC) function through the on-board DSP. The AGC can control either the transmit or receive direction or both. It is also possible for the AGC circuit to supply a fixed amount of gain or loss in either or both directions.

The AGC function is controlled using the **SA** command. Each port can be controlled independently. Gain or loss in the fixed mode is available in .5 dB steps over a range of +/- 20 dB. This command takes the form **SAxxmttmrr** where **xx** is the port number, **m** is the mode, and **tt** and **rr** are the gain parameters for the transmit and receive directions respectively. The mode settings can be 'A' for AGC on, '+' for positive gain, and '-' for negative gain. The gain parameter is specified in .5 dB steps as a two digit hexadecimal number in the range 00-28.

7.5 Examples

This section gives detailed example of various situations typical of the operation of the board.

7.5.1 An Example of an Inbound Call

The following is an example of the steps involved in a port receiving an inbound call. Both the 'C' commands and state change messages will be shown. The dialed digits will be detected, ringback played, and finally a connection made and broken with a disconnect command.

<u>commands</u>	<u>responses</u>	description
	SF06	off-hook message
CL06		set up DTMF detection, play dial tone
	SX06	detection confirmation
	ST061	the digit '1' detected

	ST062	the digit '2' detected
	ST063	the digit '3' detected
CP063		play audible ringback
	SL06	tone played to port
CC0601020304		connect the port
	SC00	connection confirmation
CD06		disconnect the port
	SI06	port returned to idle state

7.5.2 An Example of an Outgoing Call

This example shows the steps involved in a port making an outgoing call. First, the port will go off-hook and digits will be sent, then the port will be connected to, and finally disconnected when a far end disconnect is detected.

<u>commands</u> CT001234	responses	<u>description</u> go off-hook, send digits 1234
	SL00	digits being sent
	SE00	completion of digit sending
	SF06	off-hook message
CC0601020304		connect audio to the port
	SC06	connection confirmation
	SN00	on-hook detected
CD06		disconnect the port
	SI06	port in idle state

7.5.3 An Example of Receiving Address Digits

In this example an incoming call is received using a DID address protocol. The call is answered and disconnected.

<u>commands</u>	<u>responses</u>	description
	SD001234	digits 1234 received
CP063		play audible ringback
	SL06	tone played to port
CC0601020304		connect the port
	SC00	connection confirmation
CD06		disconnect the port

SI06 port returned to idle state

7.5.4 An Example of a Hook Flash

This example shows what might happen if a hook flash is used to get the attention of the application to perform some action such as transferring a call. The hook flash will be received, digits will be detected and then processed.

<u>commands</u> CH00	<u>responses</u>	<u>description</u> send off-hook
CHOU	SF00	port goes off-hook
CC0001000200	51 00	port connected to caller
	SC00	connection confirmation
	SQ00	hook flash detected
CL00		Set up DTMF detection, play dial tone
	SX00	detection confirmation
	ST001	digit '1' detected, dial tone removed
	ST002	digit '2' detected
	ST003	digit '3' detected
CH00		hold command to end detection
	SH00	hold confirmation
	SN00	on-hook detected
CD00		disconnect command
	SI00	disconnect confirmation, port idle

8.0 Diagnostics & Error Messages

8.1 Diagnostic Commands

Several diagnostic commands are available:

- VA Used to request the checksum of the firmware in the alternate segment of the board. This is returned in a message of the form
 VAxxxx where xxxx is the checksum of the firmware in the alternate segment of ROM.
- VC Used to request the version of the firmware on the board. A message of the form VCxxxxyyyyPEC is returned, where xxxx is the checksum of the firmware stored in the main segment of ROM, yyyy is a four-digit version number, PEC indicates the board type (H.100 ARM E&M Board with ZL50031 telephony switch). This message takes the same form with all Infinity Series boards, and can be used to determine the configuration of the system.
- **VD** Used to request the version of the DSP software. This is returned in a message of the form **VDxxxx**, where **xxxx** is the version number.
- QHbsstt Queries the ZL50031 switching chip for bus **b**, stream **ss**, and timeslot **tt**. The bus value **b** can be either 'H' for the H.100 bus or 'L' for the local bus, or 'R' for control registers. For the H.100 and local buses, the contents are returned in a message of the form QHHssttcsttdd, where cstt are the control bits and source stream and timeslot, and dd is the contents of data memory. If the timeslot is not found, only a location value of 01FF is returned. The register results are returned as a 16 bit value in a message of the form QHR00rrdddd where **rr** is the register address and dddd is the data. This command refers to the details of the internal

switching circuitry, and is ordinarily of limited use to an application.

8.2 Error Messages

The board will detect a number of error conditions and respond with appropriate error messages. These messages are:

ECxx A clock error bit event **xx** has occurred. The value **xx** is a hexadecimal number where the bits are (a bit value of 1 is an error):

<u>bit</u>	description
0	CT bus clock A
1	CT bus clock B
2	reserved - always 1
3	reserved - always 1
4	reserved - always 1
5	reserved - always 1

- **ETxx** Address digits were not received on port **xx** within 10 seconds on an incoming call using a DID address protocol.
- **EWxx** A wink was not detected when placing an outgoing call on port **xx** when the outgoing protocol was set to either Delay-Dial or Wink Start.
- **SM0** An EEPROM operation has failed. This indicates that either a read or write to the EEPROM was unsuccessful.
- **SM1** An EEPROM operation successfully completed.
- U[*cmnd*] If the board does not recognize a command message, or if it does not have the appropriate number of arguments, the same message will be returned by the board preceded by a 'U' to indicate an undefined message.

Appendix A Environmental Specifications

The Infinity Series H.100 E&M Board meets the following environmental specifications:

TEMPERATURE EXTREMES:

Operating: 0°C (+32°F) to +50°C (+122°F). Storage: -40°C (-40°F) to +70°C (+158°F).

AMBIENT HUMIDITY:

All boards will withstand ambient relative humidity from 0% to 95% noncondensing in both operating and storage conditions.

MECHANICAL:

All Infinity Series H.100 boards conform to the PCI-SIG mechanical specifications for full-length PCI or PCI Express cards.

ELECTRICAL REQUIREMENTS:

PCI Boards:+5 volts @ 1.5 amps maximum.-5 volts, +3 volts, and ±12 volts are not required.

PCI Express Boards +3.3 volts @ 1.5 amps maximum +12 volts @ 200 mA maximum

-48 volts maximum current per port 30 mA for all boards

MTBF:

50,000 hours.

Appendix B Custom Tones

The DSP firmware provides a wide variety of dialed and information tones that should cover the majority of situations. However, for those cases when the standard set of tones is not sufficient, it is possible to modify these tones to provide custom capabilities.

The standard set of informational or call progress tones consist of the twelve tones listed in the table below. For backward compatibility, an alternate set of tones is provided where tones 0-6 conform to the ETSI standards. The tone set is selected by using the **SZ** command. These tones can be played to a port using the **CP** command. Any one of these twelve tones 0-B may be modified by using the **SI** command to create a custom call progress tone. However, if this is done, the original tone will no longer be available.

Tone	North	ETSI	Tone	North	ETSI
	America			America	
00h	dial tone	ETSI dial tone	06h	ETSI dial tone	silence
01h	reorder	congestion	07h	congestion	dial tone
		tone		tone	
02h	busy	ETSI busy	08h	ETSI busy	reorder
	tone	tone		tone	
03h	ringback	ETSI ringback	09h	ETSI ringback	busy tone
04h	digital	U.K ringback	0Ah	U.K. ringback	ringback
	milliWatt				
05h	silence	Japanese	0Bh	Japanese	digital
		ringback		ringback	milliWatt

Standard Call Progress Tones

The command to create a custom call progress tone takes the form

SIttffffllfffllnnffnnff

where **tt** is the number of the tone, **ffff** are the first and second frequencies used to make the tone, **ll** is the level of the first and second

frequencies in -dBm, and **nn** and **ff** are the on and off times of the tone in 50 ms increments. To create complex cadences, a second on and off time may be specified. The frequency range is from 0000-0CFFh or 0 to 3327 Hz. The levels **11** of the two frequency components are given in -dBm and have a range of 00-3Eh or 0 dBm to -62 dBm. A value of 3Fh will disable the frequency allowing a single frequency tone to be created. The on and off times are specified in 50 ms increments and have a range of 00-FEh or 50-12700 ms. A duration of value of 0FFh will cause a continuous tone.

As an example, the command **SI04028A1001A41005050000** will change the digital milliWatt (tone 04) to a tone composed of the frequencies 650 and 420 Hz each at -16 dBm with a cadence of 250 ms on and 250 ms off.

Custom tones can also be created for use with the **CT** command. The standard set of tones consists of 29 tones plus 2 tones that are reserved for custom programming as given in the following table. The first 16 tones are the standard DTMF tones. The next four tones are used to provide a lower and upper single frequency tone and a short and long pause. The next nine tones are used for the Call Waiting and Caller ID functions. The two remaining tones are reserved for user programming.

Any of these 31 tones may be customized using the **SD** command. However, if one of the standard tones is modified, it is no longer available. It is therefore not recommended that the standard tones (00-1Ch) be modified if it can be avoided. The form of the command to modify a tone is:

SDttffffllfffllnnff

where **tt** is the tone, **ffff** is the first and second frequencies used to make the tone, **ll** is the level of the first and second frequencies, and **nn** and **ff** are the on and off durations of the tone. The on and off times are specified in 10 ms steps with a range of 00h-FFh or 10 to 2550 ms. The ranges for the other arguments are the same as for the **SI** command.

Standard Dialed Digit TonesToneChar.DescriptionToneChar.Description					
Tone	Cnar.	.	Tone	Char.	Description
00	0	DTMF 0	10	L	697 Hz
01	1	DTMF 1	11	U	941 Hz
02	2	DTMF 2	12	Х	200 ms pause
03	3	DTMF 3	13	Р	2 s pause
04	4	DTMF 4	14	Ν	dial tone
05	5	DTMF 5	15	E	ETSI dial tone
06	6	DTMF 6	16	а	440 Hz .1/.1
07	7	DTMF 7	17	b	440 Hz .1/.03
08	8	DTMF 8	18	с	440 Hz .3/.1
09	9	DTMF 9	19	d	440 Hz .3/.03
0A	А	DTMF A	1A	e	2130/3750 Hz .08
0B	В	DTMF B	1 B	f	2130/3750 .1/.05
0C	С	DTMF C	1C	g	DTMF D .06 on
0D	D	DTMF D	1D	h	user tone 1
0E	*	DTMF *	1E	i	user tone 2
0F	#	DTMF #	1F		unavailable

Standard Dialed Digit Tones

As an example, to modify the first user programmable tone, the command **SD1D028A1001A4100505** would create a tone composed of the frequencies 650 and 420 Hz at -16 dBm with an on and off duration of 50 ms. To send this tone to a port, the command would be **CT00h**.

It is also possible to send a custom tone on a one time basis to a specific port. The command to do this takes the form:

CVxxffffllfffllnnffrr

where **xx** is the port number, **ffff** and **ll** are the frequencies and levels of the first and second tone as in the commands above, **nn** and **ff** are the on and off durations of the tone pair, and **rr** is the number of times the tones repeat. The on and off times are specified in 50 ms steps and have a range of 00-50h or 0 ms to 4.0 s. The number of repetitions ranges from 01-0FFh. If a value of 00h is used the digit will be played one time. The frequencies and levels have the same ranges as for the **SI** command. As an example, the command **CV04028A0A01A40A050507** would send a tone consisting of 650 and 420 Hz at -10 dBm, on and off durations of 250 ms and repeating a total of seven times to port 4.

Appendix C E&M Interfaces

E&M interfaces have a long history of usage in connecting various pieces of analog equipment together or to the public switched telephone network. The important features of the E&M interface is that it separates the audio transmission path from the signaling leads, and that positive supervision is provided by the signaling leads in both directions, that is that either side of the connection can indicate an on-hook and an off-hook state.

The hook status signaling is carried on two leads, the E-lead which is the signal in one direction and the M-lead in the other direction. The origin of this nomenclature is that the E-lead is the signal for the listening or "Ear" direction, while the M-lead is the signaling for the talking or "Mouth" direction. However, as the E&M interface is bidirectional, much confusion can result as to which lead is which. The earliest forms of E&M interfaces were asymmetrical, with one side referred to as the trunk circuit and the other side the signaling circuit. Different signaling systems were used in each direction. In these interfaces, the M-lead carried the signaling information from the trunk to the signaling circuit and the E-lead carried information from the signaling circuit to the trunk circuit. Some later versions of the interfaces are symmetrical, which makes the determination of which lead is the M-lead and which the E-lead more ambiguous. For purposes of the H.100 E&M Board, the lead used to signal is always referred to as the M-lead and the lead on which a signal is received is always called the E-lead. This is due in part to the fact that a port can be configured as either the trunk or the signaling side under software control which will change the form of the signal, but not the actual wire carrying the signal.

The E&M interface has evolved over the years with a number of different variations in use. These different variations are distinguished from one another by referring to them as "Type" followed by a Roman numeral, i.e. Type I or Type II. Each type has a specific scheme of referencing the E and M leads to ground, battery, or open for the on-hook and off-hook cases. Types I and V use only a single lead in each direction, while Types II, III,

and IV use additional leads, referred to as the SB and SG leads, which essentially serve as ground references.

The H.100 E&M Board can support the Type I and Type V interfaces. Type I has both a Trunk and a Signaling side which are different. The Type V interface is symmetrical, that is both sides are identical. In the case of a Type V interface, the M-lead of one side can be connected to the E-lead of the other side and vice versa. The following table lists the interfaces and the signals present for the on-hook and off-hook states.

Туре	Lead	On-hook State	Off-hook State
I - Trunk Circuit	M-lead	Ground	Battery
I - Signaling Circuit	E-Lead	Open	Ground
V - Both	Both	Open	Ground

E&M Signaling States

Unless equipment using the E&M interface is well documented, it can sometimes be difficult determining exactly which lead is which. The pinout in Figure 4 below gives the pins for the signaling (M-lead) and sensor (E-lead) on the H.100 E&M Board.

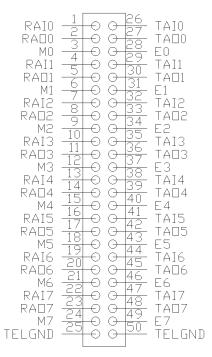


Figure 4: J1 RJ21 Pin Assignment

A volt meter and the following tables can be used to assist in configuring the signaling:

Туре	On-hook	n-hook Off-hook State	
	State		
I – Trunk Circuit	Ground	Connected to Battery (current	
		limited)	
I – Signaling Circuit	Open	Ground	
IV – Both	Open	Connected to SB	
V – Both	Open	Ground	

E&M Board M-Lead/SB-Lead Signaling

Туре	Lead	Open Circuit Voltage	
I – Trunk Circuit	E	Battery (current limited)	
I – Signaling Circuit	E	Ground	
IV	E	Battery (current limited)	
1 V	SG	Ground	
V	Е	Battery (current limited)	

Note, that for a Type I interface, the port on the H.100 E&M board must be set to the opposite side from the equipment to be connected to. For example, if the equipment is configured as a Trunk Circuit the port must be configured as a Signaling Circuit.

The signaling that can take place over these leads can indicate the on-hook or off-hook states. They can also be used to transmit "winks" used as acknowledgments or ready signals in address protocols, or as hook flashes which are sometimes used to get the attention of a piece of equipment to set up a transfer or conference. E&M interfaces are also used to interface phone equipment to two-way radios. In this case, the signaling lead takes the place of a "push-to-talk" switch.

The audio portion of an E&M interface is carried on one or two pairs of wires, and are referred to as 2-wire or 4-wire interfaces. Note that this does not include the E and M leads. In the 2-wire case, the single pair carries audio in both directions much like a standard loop interface. In the 4-wire

case, one pair is used for the audio in each direction. Note that the transmit pair on one side is connected to the receive pair on the other side of the interface. In both cases, the audio pair is "dry", i.e. no talk battery is present.

On the H.100 E&M Board, the interface is configured using the **SS** and **ST** commands. The **SS** command is used to configure the E&M leads, i.e. the type of interface. The command consists of **SS** followed by a letter for each of the ports on the board designating the type. The choices are 'S' for a Type I Signaling Circuit, 'T' for a Type I Trunk Circuit, 'V' for a Type V Trunk Circuit, and 'N' or 'U' for not used or undefined. As a Type V Signaling Circuit is the same as the Trunk Circuit except that the pins are switched around, there is not a separate choice for this.

The audio portion of the interface is configured with the **ST** command. This command consists of **ST** followed by a character for each of the ports indicating the configuration of that port. The choices are '2' for a 2-wire E&M interface, '4' for a 4-wire interface, 'R' for a 4-wire radio transceiver interface, and 'N' or 'U' for not used or undefined. The type 'R' or radio interface decouples the E and M leads from the state machine controlling the connection. The M-lead is controlled using the **XC** and **XO** commands. Normally, radio transceiver interfaces are 4-wire. If a 2-wire interface is desired where the E and M leads are decoupled from the state machine, type 'N' can be used.

As an example, the following commands will configure the ports as follows:

Port 0 - Type I - Trunk Circuit, 2-wire
Port 1 - Type I - Signaling Circuit, 2-wire
Port 2 - Type I - Trunk Circuit, 4-wire
Port 3 - Type I - Signaling Circuit, 4-wire
Port 4 - Type V -Trunk Circuit, 2-wire
Port 5 - Type V - Trunk Circuit, 4-wire
Port 6 - Type V - Trunk Circuit, 4 -wire Radio Interface
Port 7 - undefined
configures signaling

SSTSTSVVVN	configures signaling
ST224424RN	configures audio and port behavior

C-4